8 resultados para BOSONIZATION
em Indian Institute of Science - Bangalore - Índia
Resumo:
We have obtained the quantum phase diagram of a one-dimensional superconducting quantum dot lattice using the extended Bose-Hubbard model for different commensurabilities. We describe the nature of different quantum phases at the charge degeneracy point. We find a direct phase transition from the Mott insulating phase to the superconducting phase for integer band fillings of Cooper pairs. We predict explicitly the presence of two kinds of repulsive Luttinger liquid phases, besides the charge density wave and superconducting phases for half-integer band fillings. We also predict that extended range interactions are necessary to obtain the correct phase boundary of a one-dimensional interacting Cooper system. We have used the density matrix renormalization group method and Abelian bosonization to study our system.
Resumo:
We study the current produced in a Tomonaga-Luttinger liquid by an applied bias and by weak, pointlike impurity potentials which are oscillating in time. We use bosonization to perturbatively calculate the current up to second order in the impurity potentials. In the regime of small bias and low pumping frequency, both the dc and ac components of the current have power-law dependences on the bias and pumping frequencies with an exponent 2K-1 for spinless electrons, where K is the interaction parameter. For K < 1/2, the current grows large for special values of the bias. For noninteracting electrons with K=1, our results agree with those obtained using Floquet scattering theory for Dirac fermions. We also discuss the cases of extended impurities and of spin-1/2 electrons.
Resumo:
We study a model of fermions hopping on a chain with a weak incommensuration close to dimerization; both q, the deviation of the wave number from pi, and delta, the strength of the incommensuration, are assumed to be small. For free fermions, we show that there are an infinite number of energy bands which meet at zero energy as q approaches zero. The number of states lying inside the q = 0 gap remains nonzero as q/delta --> 0. Thus the limit q --> 0 differs from q = 0, as can be seen clearly in the low-temperature specific heat. For interacting fermions or the XXZ spin-(1/2) chain, we use bosonization to argue that similar results hold. Finally, our results can be applied to the Azbel-Hofstadter problem of particles hopping on a two-dimensional lattice in the presence of a magnetic field.
Resumo:
An anomalous multiflavor chiral theory, with the gauge group SU(N), is studied using non-Abelian bosonization. The theory can be made gauge invariant by introducing Wess-Zumino fields and it is particularly simple if the Jackiw-Rajaraman parameter equals 2. In the strong-coupling limit, the low-energy effective theory only contains light unconfined fermions which interact weakly.
Resumo:
We study the effect that resistive regions have on the conductance of a quantum wire with interacting electrons which is connected to Fermi liquid leads. Using the bosonization formalism and a Rayleigh dissipation function to model the power dissipation, we use both scattering theory and Green's function techniques to derive the DC conductance. The resistive regions are generally found to lead to incoherent transport. For a single wire, we find that the resistance adds in series to the contact resistance of h/e(2) for spinless electrons, and the total resistance is independent of the Luttinger parameter K-W of the wire. We numerically solve the bosonic equations to illustrate what happens when a charge density pulse is incident on the wire; the results depend on the parameters of the resistive and interacting regions in interesting ways. For a junction of Tomonaga-Luttinger liquid wires, we use a dissipationless current splitting matrix to model the junction. For a junction of three wires connected to Fermi liquid leads, there are two families of such matrices; we find that the conductance matrix generally depends on K-W for one family but is independent of K-W for the other family, regardless of the resistances present in the system. Copyright (c) EPLA, 2011
Resumo:
We use the Density Matrix Renormalization Group and the Abelian bosonization method to study the effect of density on quantum phases of one-dimensional extended Bose-Hubbard model. We predict the existence of supersolid phase and also other quantum phases for this system. We have analyzed the role of extended range interaction parameters on solitonic phase near half-filling. We discuss the effects of dimerization in nearest neighbor hopping and interaction as well as next nearest neighbor interaction on the plateau phase at half-filling.
Resumo:
In a recent paper, we combined the technique of bosonization with the concept of a Rayleigh dissipation function to develop a model for resistances in one-dimensional systems of interacting spinless electrons Europhys. Lett. 93, 57007 (2011)]. We also studied the conductance of a system of three wires by using a current splitting matrix M at the junction. In this paper, we extend our earlier work in several ways. The power dissipated in a three-wire system is calculated as a function of M and the voltages applied in the leads. By combining two junctions of three wires, we examine a system consisting of two parallel resistances. We study the conductance of this system as a function of the M matrices and the two resistances; we find that the total resistance is generally quite different from what one expects for a classical system of parallel resistances. We do a sum over paths to compute the conductance of this system when one of the two resistances is taken to be infinitely large. We study the conductance of a three-wire system of interacting spin-1/2 electrons, and show that the charge and spin conductances can generally be different from each other. Finally, we consider a system of two wires that are coupled by a dissipation function, and we show that this leads to a current in one wire when a voltage bias is applied across the other wire.
Resumo:
We study Majorana modes and transport in one-dimensional systems with a p-wave superconductor (SC) and normal metal leads. For a system with an SC lying between two leads, it is known that there is a Majorana mode at the junction between the SC and each lead. If the p-wave pairing Delta changes sign or if a strong impurity is present at some point inside the SC, two additional Majorana modes appear near that point. We study the effect of all these modes on the sub-gap conductance between the leads and the SC. We derive an analytical expression as a function of Delta and the length L of the SC for the energy shifts of the Majorana modes at the junctions due to hybridization between them; the shifts oscillate and decay exponentially as L is increased. The energy shifts exactly match the location of the peaks in the conductance. Using bosonization and the renormalization group method, we study the effect of interactions between the electrons on Delta and the strengths of an impurity inside the SC or the barriers between the SC and the leads; this in turn affects the Majorana modes and the conductance. Finally, we propose a novel experimental realization of these systems, in particular of a system where Delta changes sign at one point inside the SC.