90 resultados para BIOLOGICAL INVASION
em Indian Institute of Science - Bangalore - Índia
Resumo:
Estrogen-related receptor (ESRRA) functions as a transcription factor and regulates the expression of several genes, such as WNT11 and OPN. Up-regulation of ESRRA has been reported in several cancers. However, the mechanism underlying its up-regulation is unclear. Furthermore, the reports regarding the role and regulation of ESRRA in oral squamous cell carcinoma (OSCC) are completely lacking. Here, we show that tumor suppressor miR-125a directly binds to the 3UTR of ESRRA and represses its expression. Overexpression of miR-125a in OSCC cells drastically reduced the level of ESRRA, decreased cell proliferation, and increased apoptosis. Conversely, the delivery of an miR-125a inhibitor to these cells drastically increased the level of ESRRA, increased cell proliferation, and decreased apoptosis. miR-125a-mediated down-regulation of ESRRA impaired anchorage-independent colony formation and invasion of OSCC cells. Reduced cell proliferation and increased apoptosis of OSCC cells were dependent on the presence of the 3UTR in ESRRA. The delivery of an miR-125a mimic to OSCC cells resulted in marked regression of xenografts in nude mice, whereas the delivery of an miR-125a inhibitor to OSCC cells resulted in a significant increase of xenografts and abrogated the tumor suppressor function of miR-125a. We observed an inverse correlation between the expression levels of miR-125a and ESRRA in OSCC samples. In summary, up-regulation of ESRRA due to down-regulation of miR-125a is not only a novel mechanism for its up-regulation in OSCC, but decreasing the level of ESRRA by using a synthetic miR-125a mimic may have an important role in therapeutic intervention of OSCC and other cancers.
Resumo:
An oxovanadium(IV) complex of dipyridophenazine, as a potent metal-based PDT agent, shows efficient DNA photocleavage activity at near-IR region and high photocytotoxicity in both UV-A and visible light in HeLa cells.
Resumo:
Early human populations utilized a wide range of biological resources in a tremendous diversity of environments. As a result, they possessed high levels of cultural diversity dependent on and supportive of high levels of biological diversity. This pattern changed drastically with technological innovations enabling certain human groups to break down territorial barriers and to usurp resources of other groups. The dominant groups have gone on to exhaust a whole range of resources, depleting both biological and cultural diversity. Traditions of resource conservation can, however, re-emerge when the dominant cultures spread over the entire area and the innovations diffuse to other human groups. This could change once again as genetically engineered organisms become an economically viable proposition with the accruing advantages concentrated in the hands of a few human groups: a further drastic reduction in biological and cultural diversity may ensue.
Resumo:
Gelonin inhibits protein synthesis by inactivating the eukaryotic 60 S ribosomal subunit by an unknown mechanism. The protein was purified in high yield by a new method using Cibacron blue F3GA-Sepharose. Chemical modification studies reveal that arginine residues are essential for biological activity.
Resumo:
Systems level modelling and simulations of biological processes are proving to be invaluable in obtaining a quantitative and dynamic perspective of various aspects of cellular function. In particular, constraint-based analyses of metabolic networks have gained considerable popularity for simulating cellular metabolism, of which flux balance analysis (FBA), is most widely used. Unlike mechanistic simulations that depend on accurate kinetic data, which are scarcely available, FBA is based on the principle of conservation of mass in a network, which utilizes the stoichiometric matrix and a biologically relevant objective function to identify optimal reaction flux distributions. FBA has been used to analyse genome-scale reconstructions of several organisms; it has also been used to analyse the effect of perturbations, such as gene deletions or drug inhibitions in silico. This article reviews the usefulness of FBA as a tool for gaining biological insights, advances in methodology enabling integration of regulatory information and thermodynamic constraints, and finally addresses the challenges that lie ahead. Various use scenarios and biological insights obtained from FBA, and applications in fields such metabolic engineering and drug target identification, are also discussed. Genome-scale constraint-based models have an immense potential for building and testing hypotheses, as well as to guide experimentation.
Resumo:
We report here the synthesis and preliminary evaluation of novel 1-(4-methoxyphenethyl)-1H-benzimidazole-5-carboxylic acid derivatives 6(a–k) and their precursors 5(a–k) as potential chemotherapeutic agents. In each case, the structures of the compounds were determined by FTIR, 1H NMR and mass spectroscopy. Among the synthesized molecules, methyl 1-(4-methoxyphenethyl)-2-(4-fluoro-3-nitrophenyl)-1H-benzimidazole-5-carboxylate (5a) induced maximum cell death in leukemic cells with an IC50 value of 3 μM. Using FACS analysis we show that the compound 5a induces S/G2 cell cycle arrest, which was further supported by the observed down regulation of CDK2, Cyclin B1 and PCNA. The observed downregulation of proapoptotic proteins, upregulation of antiapoptotic proteins, cleavage of PARP and elevated levels of DNA strand breaks indicated the activation of apoptosis by 5a. These results suggest that 5a could be a potent anti-leukemic agent.
Resumo:
India has a long and rich history of tropical science. But here, as elsewhere in the tropical world, there are surprises to be discovered. One thinks immediately of the description, in December 2004, of a new species of macaque from India - the Arunachal macaque Macaca munzala. I use the word description deliberately, because this species was long known to the local people, and the species name rightly reflects this knowledge. Mun zala means "deep-forest monkey" in the language of the Dirang Monpa people of Tawang and West Kameng Districts of Arunachal Pradesh, where this species lives. The new macaque was discovered by science during field trips to these areas by Indian scientists from the Nature Conservation Foundation in Mysore, the National Institute of Advanced Studies in Bangalore, the Wildlife Conservation Society in New York, and the International Snow Leopard Trust. In this habitat, the largely Buddhist local community abstains from killing wildlife for food or sport, although the monkey has been reportedly shot for crop raiding. This species, one of the world's highest-living primate species, lives at altitudes between 1,600 and 3,500m, and is thus a veritable yeti.
Resumo:
Background & objectives: Group A Streptococcus, causative agent of several clinical manifestations codes for multiple protein invasins which help the bacterium to enter non-phagocytic cells. C5a peptidase (SCPA) is a surface protein conserved among different serotypes of M1 strain. The present study was taken up to study SCPA promoted fibronectin independent entry of GAS into epithelial cells. Methods: An isogenic 90226 emm1DeltaAB (M1(-)) mutant was constructed, with thermosensitive pGhost vector. This isogenic M1(-) mutant expressed SCPA on the surface as determined by Western blotting and immunofluorescence. Results: On preincubation with anti-SCPA serum, the isogenic M1(-) strain exhibited 54 per cent decreased invasion as compared to the bacteria incubated with control serum. Also, purified recombinant SCPA proteins blocked internalization of M1(-) streptococci into HEp-2 cells. The M1(-) strain invaded at the same efficiency in the presence or absence of fibronectin. Interpretation & conclusion: These results suggested that SCPA acted as a potential invasin of group A streptococcus and promoted invasion independent of fibronectin.
Resumo:
The inßuence of the sperm motility stimulant pentoxifylline (PF) on preimplantation embryo development in hamsters was evaluated. Eight-cell embryos were cultured in hamster embryo culture medium (HECM)-2, with or without PF (0· 0233·6 mM). There was 90%, 37% and 29% inhibition of blastocyst development by 3·6 (used for human sperm), 0·9 and 0 ·45 mM PF, respectively. However, 23 µM PF (exposed to hamster oocytes during IVF) signicantly (P < 0·05) improved blastocyst development (63· 6% v. 51· 8%); morulae development was, however, not curtailed by 0·45 mM or 0·9 mM PF (51·8%±6·0 or 50·5%±11·3, respectively). Post-implantation viability of PF-treated embryos was assessed by embryo transfer; 43% of 80 PF-treated embryos implanted compared with 40% of 79 control embryos. Of the 9 recipients, 6 females delivered pups (19, i.e. 16% of transferred embryos or 53% of implanted embryos). These data show that in hamsters, continuous presence of PF at 0·45-3·6 mM is detrimental to 8-cell embryo development whereas 23 µM PF improves the development of embryos to viable blastocysts which produce live offspring.
Resumo:
The identification of sequence (amino acids or nucleotides) motifs in a particular order in biological sequences has proved to be of interest. This paper describes a computing server, SSMBS, which can locate anddisplay the occurrences of user-defined biologically important sequence motifs (a maximum of five) present in a specific order in protein and nucleotide sequences. While the server can efficiently locate motifs specified using regular expressions, it can also find occurrences of long and complex motifs. The computation is carried out by an algorithm developed using the concepts of quantifiers in regular expressions. The web server is available to users around the clock at http://dicsoft1.physics.iisc.ernet.in/ssmbs/.
Resumo:
Sequence motifs occurring in a particular order in proteins or DNA have been proved to be of biological interest. In this paper, a new method to locate the occurrences of up to five user-defined motifs in a specified order in large proteins and in nucleotide sequence databases is proposed. It has been designed using the concept of quantifiers in regular expressions and linked lists for data storage. The application of this method includes the extraction of relevant consensus regions from biological sequences. This might be useful in clustering of protein families as well as to study the correlation between positions of motifs and their functional sites in DNA sequences.
Resumo:
Synthetic analogues of naturally occurring triterpenoids; glycyrrhetinic acid, arjunolic acid, and boswellic acids, by modification of A-ring with a cyano- and enone-functionality, have been reported. A novel method of synthesis of α-cyanoenones from isoxazoles is reported. Bioassays using primary mouse macrophages and tumor cell lines indicate potent anti-inflammatory and cytotoxic activities associated with cyano-enones of boswellic acid and glycyrrhetinic acid.
Resumo:
A Finite Element Method based forward solver is developed for solving the forward problem of a 2D-Electrical Impedance Tomography. The Method of Weighted Residual technique with a Galerkin approach is used for the FEM formulation of EIT forward problem. The algorithm is written in MatLAB7.0 and the forward problem is studied with a practical biological phantom developed. EIT governing equation is numerically solved to calculate the surface potentials at the phantom boundary for a uniform conductivity. An EIT-phantom is developed with an array of 16 electrodes placed on the inner surface of the phantom tank filled with KCl solution. A sinusoidal current is injected through the current electrodes and the differential potentials across the voltage electrodes are measured. Measured data is compared with the differential potential calculated for known current and solution conductivity. Comparing measured voltage with the calculated data it is attempted to find the sources of errors to improve data quality for better image reconstruction.