227 resultados para Averaging Theorem
em Indian Institute of Science - Bangalore - Índia
Resumo:
Experiments in spintronics necessarily involve the detection of spin polarization. The sensitivity of this detection becomes an important factor to consider when extending the low temperature studies on semiconductor spintronic devices to room temperature, where the spin signal is weaker. In pump-probe experiments, which optically inject and detect spins, the sensitivity is often improved by using a photoelastic modulator (PEM) for lock-in detection. However, spurious signals can arise if diode lasers are used as optical sources in such experiments, along with a PEM. In this work, we eliminated the spurious electromagnetic coupling of the PEM onto the probe diode laser, by the double modulation technique. We also developed a test for spurious modulated interference in the pump-probe signal, due to the PEM. Besides, an order of magnitude enhancement in the sensitivity of detection of spin polarization by Kerr rotation, to 3x10(-8) rad was obtained by using the concept of Allan variance to optimally average the time series data over a period of 416 s. With these improvements, we are able to experimentally demonstrate at room temperature, photoinduced steady-state spin polarization in bulk GaAs. Thus, the advances reported here facilitate the use of diode lasers with a PEM for sensitive pump-probe experiments. They also constitute a step toward detection of spin-injection in Si at room temperature.
Resumo:
Using the dimensional reduction regularization scheme, we show that radiative corrections to the anomaly of the axial current, which is coupled to the gauge field, are absent in a supersymmetric U(1) gauge model for both 't Hooft-Veltman and Bardeen prescriptions for γ5. We also discuss the results with reference to conventional dimensional regularization. This result has significant implications with respect to the renormalizability of supersymmetric models.
Resumo:
Based on a Hamiltonian description we present a rigorous derivation of the transient state work fluctuation theorem and the Jarzynski equality for a classical harmonic oscillator linearly coupled to a harmonic heat bath, which is dragged by an external agent. Coupling with the bath makes the dynamics dissipative. Since we do not assume anything about the spectral nature of the harmonic bath the derivation is not restricted only to the Ohmic bath, rather it is more general, for a non-Ohmic bath. We also derive expressions of the average work done and the variance of the work done in terms of the two-time correlation function of the fluctuations of the position of the harmonic oscillator. In the case of an Ohmic bath, we use these relations to evaluate the average work done and the variance of the work done analytically and verify the transient state work fluctuation theorem quantitatively. Actually these relations have far-reaching consequences. They can be used to numerically evaluate the average work done and the variance of the work done in the case of a non-Ohmic bath when analytical evaluation is not possible.
Resumo:
Analytical expressions for the corrections to duality are obtained for nonsingular potentials, and are found to be small numerically. An alternative consistent way of energy smoothing, developed by Strutinsky, is elucidated. This may be of use even when potential models are not valid.
Resumo:
An existence theorem is obtained for a generalized Hammerstein type equation
Resumo:
Es wird die Temperaturabhiingigkeit der CI35-Kernquadrupolresonanz in Natriumchlorat und Kupferchlorat im Temperature von 77 bis 300 °K untersucht. Es wird gezeigt, daß die Annahmen, die in der Theorie von Bayer gemacht werden, fur Chlorate gelten. Die Frequenz der Torsionsschwingungen der ClO3-Gruppe wird folglich mit dieser Theorie berechnet. Der berechnete Wert der Torsionsfrequenz stimmt gut mit vorhandenen Werten der Ramanspektroskopie überein.
Resumo:
Rae and Davidson have found a striking connection between the averaging method generalised by Kruskal and the diagram technique used by the Brussels school in statistical mechanics. They have considered conservative systems whose evolution is governed by the Liouville equation. In this paper we have considered a class of dissipative systems whose evolution is governed not by the Liouville equation but by the last-multiplier equation of Jacobi whose Fourier transform has been shown to be the Hopf equation. The application of the diagram technique to the interaction representation of the Jacobi equation reveals the presence of two kinds of interactions, namely the transition from one mode to another and the persistence of a mode. The first kind occurs in the treatment of conservative systems while the latter type is unique to dissipative fields and is precisely the one that determines the asymptotic Jacobi equation. The dynamical equations of motion equivalent to this limiting Jacobi equation have been shown to be the same as averaged equations.
Resumo:
In many instances we find it advantageous to display a quantum optical density matrix as a generalized statistical ensemble of coherent wave fields. The weight functions involved in these constructions turn out to belong to a family of distributions, not always smooth functions. In this paper we investigate this question anew and show how it is related to the problem of expanding an arbitrary state in terms of an overcomplete subfamily of the overcomplete set of coherent states. This provides a relatively transparent derivation of the optical equivalence theorem. An interesting by-product is the discovery of a new class of discrete diagonal representations.
Resumo:
Let X be a normal projective threefold over a field of characteristic zero and vertical bar L vertical bar be a base-point free, ample linear system on X. Under suitable hypotheses on (X, vertical bar L vertical bar), we prove that for a very general member Y is an element of vertical bar L vertical bar, the restriction map on divisor class groups Cl(X) -> Cl(Y) is an isomorphism. In particular, we are able to recover the classical Noether-Lefschetz theorem, that a very general hypersurface X subset of P-C(3) of degree >= 4 has Pic(X) congruent to Z.
Resumo:
The images of Hermite and Laguerre-Sobolev spaces under the Hermite and special Hermite semigroups (respectively) are characterized. These are used to characterize the image of Schwartz class of rapidly decreasing functions f on R-n and C-n under these semigroups. The image of the space of tempered distributions is also considered and a Paley-Wiener theorem for the windowed (short-time) Fourier transform is proved.
Resumo:
In quantum theory, symmetry has to be defined necessarily in terms of the family of unit rays, the state space. The theorem of Wigner asserts that a symmetry so defined at the level of rays can always be lifted into a linear unitary or an antilinear antiunitary operator acting on the underlying Hilbert space. We present two proofs of this theorem which are both elementary and economical. Central to our proofs is the recognition that a given Wigner symmetry can, by post-multiplication by a unitary symmetry, be taken into either the identity or complex conjugation. Our analysis often focuses on the behaviour of certain two-dimensional subspaces of the Hilbert space under the action of a given Wigner symmetry, but the relevance of this behaviour to the larger picture of the whole Hilbert space is made transparent at every stage.
Resumo:
This paper presents an improved version of Dolezal's theorem, in the area of linear algebra with continuously parametrized elements. An extension of the theorem is also presented, and applications of these results to system theory are indicated.
Resumo:
A multiplier theorem for the sublaplacian on the Heisenberg group is proved using Littlewood-Paley-Stein theory of g-functions.