41 resultados para Automated instrumentation
em Indian Institute of Science - Bangalore - Índia
Resumo:
Here the design and operation of a novel transmission electron microscope (TEM) triboprobe instrument with real-time vision control for advanced in situ electron microscopy is demonstrated. The NanoLAB triboprobe incorporates a new high stiffness coarse slider design for increased stability and positioning performance. This is linked with an advanced software control system which introduces both new and flexible in situ experimental functional testing modes, plus an automated vision control feedback system. This advancement in instrumentation design unlocks new possibilities of performing a range of new dynamical nanoscale materials tests, including novel friction and fatigue experiments inside the electron microscope.
Resumo:
This work aims at providing an effective parking management system by reducing the drivers' searching time for vacant car-parking space, in turn improving the traffic flow in the car park areas. This is achieved by the use of Fiber Bragg Grating Sensor (FBG) sensor instrumentation in vehicle parking management system. Present work involves embedding an array of FBG sensors underground in the parking space, then determining the strain changes on the FBG sensor due to load applied by the vehicle parked in the parking space, occupancy of the parking space is determined. To validate the FBG sensor parking management system, three most common cases have been considered. This closed loop FBG parking management system can give real-time feed-back to space-guidance display board helping the driver in maneuvering the vehicle to the appropriate parking space. The proposed technique offers optimized usage of parking space for the various segments of cars and also facilitates in a conjoined automated billing system, as compared to conventional method of parking systems.
Resumo:
Glass micropipettes are versatile probing tools for performing micro-and nano-manipulation tasks. This paper presents the design and development of an automated pipette puller system for fabrication of glass micropipettes. The pipette puller employs a new strategy for fabrication of micropipettes that enables achieving independent control of their taper, tip diameter, and bend-angle, and also facilitates theoretical derivation of simple, approximate relationships between the pipette shape and the pulling parameters. Subsequently, the design and fabrication of the pipette puller is described, which include that of the pipette heating system, the mechanical motion stages, and the control electronics of the pipette puller. The fabricated pipette puller is experimentally evaluated to demonstrate control of the taper, tip diameter, and the bend-angle of the micropipette. Further, the dependence of the taper and tip diameter on the pulling parameters is evaluated and is shown to be in alignment with the proposed theoretical relationships. (C) 2014 AIP Publishing LLC.
Resumo:
In this work, we report a system-level integration of portable microscopy and microfluidics for the realization of optofluidic imaging flow analyzer with a throughput of 450 cells/s. With the use of a cellphone augmented with off-the-shelf optical components and custom designed microfluidics, we demonstrate a portable optofluidic imaging flow analyzer. A multiple microfluidic channel geometry was employed to demonstrate the enhancement of throughput in the context of low frame-rate imaging systems. Using the cell-phone based digital imaging flow analyzer, we have imaged yeast cells present in a suspension. By digitally processing the recorded videos of the flow stream on the cellphone, we demonstrated an automated cell viability assessment of the yeast cell population. In addition, we also demonstrate the suitability of the system for blood cell counting. (C) 2015 AIP Publishing LLC.
Resumo:
Clinical microscopy is a versatile diagnostic platform used for diagnosis of a multitude of diseases. In the recent past, many microfluidics based point-of-care diagnostic devices have been developed, which serve as alternatives to microscopy. However, these point-of-care devices are not as multi-functional and versatile as clinical microscopy. With the use of custom designed optics and microfluidics, we have developed a versatile microscopy-based cellular diagnostic platform, which can be used at the point of care. The microscopy platform presented here is capable of detecting infections of very low parasitemia level (in a very small quantity of sample), without the use of any additional computational hardware. Such a cost-effective and portable diagnostic device, would greatly impact the quality of health care available to people living in rural locations of the world. Apart from clinical diagnostics, it's applicability to field research in environmental microbiology has also been outlined. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
This paper presents the instrumentation and control architecture for a laboratory based two-stage 4-bed silica gel + water adsorption system. The system consists of primarily two fluids: refrigerant (water vapour) and heat transfer fluid (water) flowing through various components. Heat input to the system is simulated using multiple heaters and ambient air is used as the heat sink. The laboratory setup incorporates a real time National Instruments (NI) controller to control several digital and analog valves, heaters, pumps and fans along with simultaneous data acquisition from various flow, pressure and temperature sensors. The paper also presents in detail the various automated and manual tasks required for successful operation of the system. Finally the system pressure and temperature dynamics are reported and its performance evaluated for various cycle times. (C) 2015 Elsevier Ltd. All rights reserved.
Development of an automated ultrasonic spray pyrolysis system and the growth of Cu2ZnSnS4 thin films
Resumo:
An automated ultrasonic spray pyrolysis system is fabricated for the growth of thin films. The system is equipped with x-y movement and enables film deposition in different patterns and spray rates. Cu-2(Zn,Sn)S-4 (CZTS) films are deposited using this setup. The substrate temperature (T-s) is varied from 240 to 490 degrees C. Kesterite CZTS phase is observed in all the films together with binary phases. The films prepared at T-s <340 degrees C showed SnxSy phase and those at T-s >340 degrees C showed Cu2S phase. Sulfur incorporation is maximum (40%) at 440 degrees C and the films showed better morphology. The Cu and S concentrations are varied to remove binary phases. Depth wise elemental analysis confirmed the existence of single phase CZTS. p-Type CZTS films of resistivity in the range of 10(2)-10(3) Omega cm are obtained. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
An experimental technique is proposed for the estimation of crack length as well as crack closure/opening stress during fatigue crack growth. A specially designed, single cantilever, crack opening displacement gauge is used to monitor these variables during fatigue crack propagation testing. The technique was experimentally validated through electronfractography.
Resumo:
The application of computer-aided inspection integrated with the coordinate measuring machine and laser scanners to inspect manufactured aircraft parts using robust registration of two-point datasets is a subject of active research in computational metrology. This paper presents a novel approach to automated inspection by matching shapes based on the modified iterative closest point (ICP) method to define a criterion for the acceptance or rejection of a part. This procedure improves upon existing methods by doing away with the following, viz., the need for constructing either a tessellated or smooth representation of the inspected part and requirements for an a priori knowledge of approximate registration and correspondence between the points representing the computer-aided design datasets and the part to be inspected. In addition, this procedure establishes a better measure for error between the two matched datasets. The use of localized region-based triangulation is proposed for tracking the error. The approach described improves the convergence of the ICP technique with a dramatic decrease in computational effort. Experimental results obtained by implementing this proposed approach using both synthetic and practical data show that the present method is efficient and robust. This method thereby validates the algorithm, and the examples demonstrate its potential to be used in engineering applications.
Resumo:
A simple analog instrumentation for Electrical Impedance Tomography is developed and calibrated using the practical phantoms. A constant current injector consisting of a modified Howland voltage controlled current source fed by a voltage controlled oscillator is developed to inject a constant current to the phantom boundary. An instrumentation amplifier, 50 Hz notch filter and a narrow band pass filter are developed and used for signal conditioning. Practical biological phantoms are developed and the forward problem is studied to calibrate the EIT-instrumentation. An array of sixteen stainless steel electrodes is developed and placed inside the phantom tank filled with KCl solution. 1 mA, 50 kHz sinusoidal current is injected at the phantom boundary using adjacent current injection protocol. The differential potentials developed at the voltage electrodes are measured for sixteen current injections. Differential voltage signal is passed through an instrumentation amplifier and a filtering block and measured by a digital multimeter. A forward solver is developed using Finite Element Method in MATLAB7.0 for solving the EIT governing equation. Differential potentials are numerically calculated using the forward solver with a simulated current and bathing solution conductivity. Measured potential data is compared with the differential potentials calculated for calibrating the instrumentation to acquire the voltage data suitable for better image reconstruction.
Resumo:
Background: MHC/HLA class II molecules are important components of the immune system and play a critical role in processes such as phagocytosis. Understanding peptide recognition properties of the hundreds of MHC class II alleles is essential to appreciate determinants of antigenicity and ultimately to predict epitopes. While there are several methods for epitope prediction, each differing in their success rates, there are no reports so far in the literature to systematically characterize the binding sites at the structural level and infer recognition profiles from them. Results: Here we report a new approach to compare the binding sites of MHC class II molecules using their three dimensional structures. We use a specifically tuned version of our recent algorithm, PocketMatch. We show that our methodology is useful for classification of MHC class II molecules based on similarities or differences among their binding sites. A new module has been used to define binding sites in MHC molecules. Comparison of binding sites of 103 MHC molecules, both at the whole groove and individual sub-pocket levels has been carried out, and their clustering patterns analyzed. While clusters largely agree with serotypic classification, deviations from it and several new insights are obtained from our study. We also present how differences in sub-pockets of molecules associated with a pair of autoimmune diseases, narcolepsy and rheumatoid arthritis, were captured by PocketMatch(13). Conclusion: The systematic framework for understanding structuralvariations in MHC class II molecules enables large scale comparison of binding grooves and sub-pockets, which is likely to have direct implications towards predicting epitopes and understanding peptide binding preferences.
Resumo:
16-electrode phantoms are developed and studied with a simple instrumentation developed for Electrical Impedance Tomography. An analog instrumentation is developed with a sinusoidal current generator and signal conditioner circuit. Current generator is developed withmodified Howland constant current source fed by a voltage controlled oscillator and the signal conditioner circuit consisting of an instrumentation amplifier and a narrow band pass filter. Electronic hardware is connected to the electrodes through a DIP switch based multiplexer module. Phantoms with different electrode size and position are developed and the EIT forward problem is studied using the forward solver. A low frequency low magnitude sinusoidal current is injected to the surface electrodes surrounding the phantom boundary and the differential potential is measured by a digital multimeter. Comparing measured potential with the simulated data it is intended to reduce the measurement error and an optimum phantom geometry is suggested. Result shows that the common mode electrode reduces the common mode error of the EIT electronics and reduces the error potential in the measured data. Differential potential is reduced up to 67 mV at the voltage electrode pair opposite to the current electrodes. Offset potential is measured and subtracted from the measured data for further correction. It is noticed that the potential data pattern depends on the electrode width and the optimum electrode width is suggested. It is also observed that measured potential becomes acceptable with a 20 mm solution column above and below the electrode array level.
Resumo:
Background: MHC/HLA class II molecules are important components of the immune system and play a critical role in processes such as phagocytosis. Understanding peptide recognition properties of the hundreds of MHC class II alleles is essential to appreciate determinants of antigenicity and ultimately to predict epitopes. While there are several methods for epitope prediction, each differing in their success rates, there are no reports so far in the literature to systematically characterize the binding sites at the structural level and infer recognition profiles from them. Results: Here we report a new approach to compare the binding sites of MHC class II molecules using their three dimensional structures. We use a specifically tuned version of our recent algorithm, PocketMatch. We show that our methodology is useful for classification of MHC class II molecules based on similarities or differences among their binding sites. A new module has been used to define binding sites in MHC molecules. Comparison of binding sites of 103 MHC molecules, both at the whole groove and individual sub-pocket levels has been carried out, and their clustering patterns analyzed. While clusters largely agree with serotypic classification, deviations from it and several new insights are obtained from our study. We also present how differences in sub-pockets of molecules associated with a pair of autoimmune diseases, narcolepsy and rheumatoid arthritis, were captured by PocketMatch(13). Conclusion: The systematic framework for understanding structural variations in MHC class II molecules enables large scale comparison of binding grooves and sub-pockets, which is likely to have direct implications towards predicting epitopes and understanding peptide binding preferences.
Resumo:
This paper describes a method of automated segmentation of speech assuming the signal is continuously time varying rather than the traditional short time stationary model. It has been shown that this representation gives comparable if not marginally better results than the other techniques for automated segmentation. A formulation of the 'Bach' (music semitonal) frequency scale filter-bank is proposed. A comparative study has been made of the performances using Mel, Bark and Bach scale filter banks considering this model. The preliminary results show up to 80 % matches within 20 ms of the manually segmented data, without any information of the content of the text and without any language dependence. 'Bach' filters are seen to marginally outperform the other filters.
Resumo:
This correspondence describes a method for automated segmentation of speech. The method proposed in this paper uses a specially designed filter-bank called Bach filter-bank which makes use of 'music' related perception criteria. The speech signal is treated as continuously time varying signal as against a short time stationary model. A comparative study has been made of the performances using Mel, Bark and Bach scale filter banks. The preliminary results show up to 80 % matches within 20 ms of the manually segmented data, without any information of the content of the text and without any language dependence. The Bach filters are seen to marginally outperform the other filters.