9 resultados para Auto-évaluation
em Indian Institute of Science - Bangalore - Índia
Resumo:
A novel, cost effective,environment-friendly and energetically beneficial alternative method for the synthesis of giant dielectric pseudo-perovskite material CaCu3Ti4O12 (CCTO) is presented. The method involved auto-combustion of an aqueous precursor solution in oxygen atmosphere with the help of external fuels and is capable of producing high amount of CCTO at ultra-low temperature, in the combustion residue itself. The amount of phase generated was observed to be highly dependent on the combustion process i.e. on the nature and amount of external-fuels added for combustion. Two successful fuel combinations capable of producing reasonably higher amount of the desired compound were investigated. On a structural characterization grain size was observed to decrease drastically to nano-dimension compared to submicron-size that was obtained in a traditional sol-gel combustion and subsequent cacination method. Therefore, the method reported can produce nano-crystalline CaCu3Ti4O12 ceramic matrix at an ultra-low temperature and is expected to be applicable for other multifunctional perovskite oxide materials.
Resumo:
In this article, we use some spectral properties of polynomials presented in 1] and map an auto-correlation sequence to a set of Line Spectral Frequencies(LSFs) and reflection coefficients. This novel characterization of an auto-correlation sequence is used to obtain a lattice structure of a Linear-Phase(LP) FIR filter.
Resumo:
In last 30 years innovative research in the area of auto exhaust catalysis is being developed and CeO2 has been found to play a major role in this area due to its unique redox properties. In this review, auto exhaust emission and its impact on earth’s environment, global concern and recent advances in science and technology in automotive exhaust catalysis have been documented. A new preparative method of dispersing metal ions by solution combustion technique over CeO2 and TiO2 resulting mainly Ce1−xMxO2−δ, Ti1−xMxO2−δ and Ce1−x−yTixMyO2−δ (M = Pd, Rh and Pt) catalysts, structure of these materials, their catalytic properties towards auto exhaust catalysis, structure–property relation and mechanism of catalytic reactions are accounted here. In these materials, metal ions are incorporated into substrate matrix to a certain limit in the solid solution form and we have established a new direction in heterogeneous catalysis by turning to the concept of dispersed metal ions as catalytically active sites from the conventionally nurtured idea of metal particles as active centers for catalysis.
Resumo:
We present a simple route for synthesis of Y2O3 for both photoluminescent (PL) and thermoluminescent (TL) applications. We show that by simply switching the fuel from ethylene di-amine tetracetic acid (EDTA) to its disodium derivative (Na-2-EDTA), we obtain a better photoluminescent material. On the other hand, use of EDTA aids in formation of Y2O3 which is a better thermoluminescent material. In both cases pure cubic nano-Y2O3 is obtained. For both the material systems, structural characterization, photoluminescence, thermoluminescence, and absorbance spectra are reported and analyzed. Use of EDTA results in nano Y2O3 with crystallite size similar to 10 nm. Crystallinity improves, and crystallite size is larger (similar to 30 nm) when Na-2-EDTA is used. TL response of Y2O3 nanophosphors prepared by both fuels is examined using UV radiation. Samples prepared with EDTA show well resolved glow curve at 140 degrees C, while samples prepared with Na-2-EDTA shows a glow curve at 155 degrees C. Effect of UV exposure time on TL characteristics is investigated. The TL kinetic parameters are also calculated using glow curve shape method. Results indicate that the TL behavior of both the samples follow a second order kinetic model. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Ni0.4Zn0.2Mn0.4Fe2O4 nanopowders were prepared by auto-combustion method. The as-synthesized powders were characterized using X-ray diffraction (XRD) and thermo-gravimetric-differential thermal analysis (TG-DTA), and the powders were densified at different temperatures 400 degrees C, 500 degrees C, 600 degrees C and 700 degrees C/4 hrs using conventional sintering method. The sintered samples were characterized by XRD and transmission electron microscope (TEM). The bulk densities of the samples were increased with an increase of sintering temperature. The grain sizes of all the samples vary in between 18 nm to 30 nm. The hysteresis loops show high saturation magnetization and low coercivity, indicates that it is a soft material. The incremental permeability (permeability with magnetic field superposition) was influenced by both Delta M and H-c. A sample with higher initial permeability and favoured the attainment of a higher incremental permeability. The Q-factor was mainly determined by the sintered density and microstructure. To summarize, a uniform and dense microstructure with relatively small average grain size is favourable for obtaining better dc-bias-superposition characteristics, including permeability and Q-factor.
Resumo:
Ho3+ (0.25-7 mol%) doped Sr2CeO4 nanophosphors were synthesized by solution combustion method using urea as fuel. The structural properties of the nanophosphors were investigated by powder X-ray diffraction studies (PXRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. UV-Visible and photoluminescence (PL) spectroscopic techniques were used for analysing the optical properties of the nanoparticles. PXRD and TEM results revealed the formation of Sr2CeO4: Ho3+ nanocrystalline particles with orthorhombic crystal structure. From the UV-Vis studies the optical band gap energy found to decrease from 5.9 to 5.74 eV with increase in dopant concentration. The PL spectra exhibit the broad excitation band from 200 to 400 nm which concurs well with the commercial near UV LED. The PL spectra vary with the dopant content due to energy transfer from the host to the activator. In this present work we demonstrate that color tuning of phosphor can be achieved by merely varying the Ho3+ ions concentration. The CIE and CCT chromaticity coordinates suggests Sr2CeO4: Ho3+ nanophosphors may be potentially applicable as promising single - phased phosphors for lighting applications. (C) 2015 Elsevier B.V. All rights reserved.