3 resultados para Audio-visual library service.
em Indian Institute of Science - Bangalore - Índia
Resumo:
Defending a large social insect colony containing several thousands of workers requires the simultaneous action of many individuals. Ideally this action involves communication between the workers, enabling coordinated action and a fast response. The Asian dwarf honeybee, Apis florea, is a small honeybee with an open nesting habit and a comparatively small colony size, features that leave them particularly exposed to predators. We describe here a novel defence response of these bees in which the emission of an initial warning signal from one individual (“piping”) is followed 0.3 to 0.7 seconds later by a general response from a large number of bees (“hissing”). Piping is audible to the human ear, with a fundamental frequency of 384 ± 31Hz and lasting for 0.82 ± 0.35 seconds. Hissing is a broad band, noisy signal, clearly audible to the human observer and produced by slight but visible movements of the bees' wings. Hissing begins in individuals close to the piping bee, spreads rapidly to neighbours and results in an impressive coordinated crescendo occasionally involving the entire colony. Piping and hissing are accompanied by a marked decrease, or even cessation, of worker activities such as forager dancing and departures from the colony. We show that whereas hissing of the colony can be elicited without piping, the sequential and correlated piping and hissing response is specific to the presence of potential predators close to the colony. We suggest that the combined audio-visual effect of the hissing might deter small predators, while the cessation of flight activity could decrease the risk of predation by birds and insects which prey selectively on flying bees.
Resumo:
Many of the research institutions and universities across the world are facilitating open-access (OA) to their intellectual outputs through their respective OA institutional repositories (IRs) or through the centralized subject-based repositories. The registry of open access repositories (ROAR) lists more than 2850 such repositories across the world. The awareness about the benefits of OA to scholarly literature and OA publishing is picking up in India, too. As per the ROAR statistics, to date, there are more than 90 OA repositories in the country. India is doing particularly well in publishing open-access journals (OAJ). As per the directory of open-access journals (DOAJ), to date, India with 390 OAJs, is ranked 5th in the world in terms of numbers of OAJs being published. Much of the research done in India is reported in the journals published from India. These journals have limited readership and many of them are not being indexed by Web of Science, Scopus or other leading international abstracting and indexing databases. Consequently, research done in the country gets hidden not only from the fellow countrymen, but also from the international community. This situation can be easily overcome if all the researchers facilitate OA to their publications. One of the easiest ways to facilitate OA to scientific literature is through the institutional repositories. If every research institution and university in India set up an open-access IR and ensure that copies of the final accepted versions of all the research publications are uploaded in the IRs, then the research done in India will get far better visibility. The federation of metadata from all the distributed, interoperable OA repositories in the country will serve as a window to the research done across the country. Federation of metadata from the distributed OAI-compliant repositories can be easily achieved by setting up harvesting software like the PKP Harvester. In this paper, we share our experience in setting up a prototype metadata harvesting service using the PKP harvesting software for the OAI-compliant repositories in India.