75 resultados para Atomic layer deposition (ALD)
em Indian Institute of Science - Bangalore - Índia
Resumo:
Thin films of ZrO2 have been deposited by ALD on Si(100) and SIMOX using two different metalorganic complexes of Zr as precursors. These films are characterized by X-ray diffraction, transmission and scanning electron microscopies, infrared spectroscopy, and electrical measurements. These show that amorphous ZrO2 films of high dielectric quality may be grown on Si(100) starting about 400degreesC. As the growth temperature is raised, the films become crystalline, the phase formed and the microstructure depending on precursor molecular structure. The phase of ZrO2 formed depends also on the relative duration of the precursor and oxygen pulses. XPS and IR spectroscopy show that films grown at low temperatures contain chemically unbound carbon, its extent depending on the precursor. C-V measurements show that films grown on Si(100) have low interface state density, low leakage current, a hysteresis width of only 10-250 mV and a dielectric constant of similar to16-25.
Resumo:
Substantial amount of fixed charge present in most of the alternative gate dielectrics gives rise to large shifts in the flat-band voltage (VFB) and charge trapping and de-trapping causes hysterectic changes on voltage cycling. Both phenomena affect stable and reliable transistor operation. In this paper we have studied for the first time the effect of post-metallization hydrogen annealing on the C-V curve of MOS capacitors employing zirconia, one of the most promising gate dielectric. Samples were annealed in hydrogen ambient for up to 30 minutes at different temperatures ranging from room temperature to 400°C. C-V measurements were done after annealing at each temperature and the hysteresis width was calculated from the C-V curves. A minimum hysteresis width of ∼35 mV was observed on annealing the sample at 200°C confirming the excellent suitability of this dielectric
Resumo:
The effect of inserting ultra-thin atomic layer deposited Al2O3 dielectric layers (1 nm and 2 nm thick) on the Schottky barrier behaviour for high (Pt) and low(Al) work function metals on n- and p-doped InGaAs substrates has been investigated. Rectifying behaviour was observed for the p-type substrates (both native oxide and sulphur passivated) for both the Al/p-InGaAs and Al/Al2O3/p-InGaAs contacts. The Pt contacts directly deposited on p-InGaAs displayed evidence of limited rectification which increased with Al2O3 interlayer thickness. Ohmic contacts were formed for both metals on n-InGaAs in the absence of an Al2O3 interlayer, regardless of surface passivation. However, limited rectifying behaviour was observed for both metals on the 2 nm Al2O3/n-InGaAs samples for the sulphur passivated InGaAs surface, indicating the importance of both surface passivation and the presence of an ultra-thin dielectric interlayer on the current-voltage characteristics displayed by these devices. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Atomic layer deposition was used to obtain TiO2 thin films on Si (100) and fused quartz, using a novel metal organic precursor. The films were grown at 400 degrees C, varying the amount of oxygen used as the reactive gas. X-ray diffraction showed the films to be crystalline, with a mixture of anatase and rutile phases. To investigate their optical properties, ellipsometric measurements were made in the UV-Vis-NIR range (300-1700 nm). Spectral distribution of various optical constants like refractive index (n), absorption index (k), transmittance (T), reflectance (R), absorption (A) were calculated by employing Bruggemann's effective medium approximation (BEMA) and Maxwell-Garnet effective medium approximation, in conjunction with the Cauchy and Forouhi-Bloomer (FB) dispersion relations. A layered optical model has been proposed which gives the thickness, elemental and molecular composition, amorphicity and roughness (morphology) of the TiO2 film surface and and the film/substrate interface, as a function of oxygen flow rate The spectral distribution of the optical band gap (E-g(opt)), complex dielectric constants (epsilon' and epsilon''), and optical conductivity (sigma(opt)), has also been determined.
Resumo:
We present a photoanode for dye-sensitized solar cell (DSC) based on ZnO nanoshell deposited by atomic layer deposition at 150 degrees C on a mesoporous insulating template. An ultrathin layer of ZnO between. 3 and 6 nm, which exhibits quantum confinement effect, is found to be sufficient to transport the photogenerated electrons to the external contacts and exhibits near-unity collection efficiency. A 6 nm ZnO nanoshell on a 2.5 mu m mesoporous nanoparticle Al2O3 template yields photovoltaic power conversion efficiency (PCE) of 4.2% in liquid DSC. Perovskite absorber (CH3NH3PbI3) based solid state solar cells made with similar ZnO nanostructures lead to a high PCE of 7%.
Resumo:
The present study demonstrates a method to deliver hydrophobic drugs by incorporation into thin films and microcapsules fabricated via a layer-by-layer assembly approach. The hydrophobic molecule binding properties of albumin have been exploited for solubilization of a water-insoluble molecule, pyrene (model drug), by preparation of non-covalent conjugates with bovine serum albumin (BSA). Conjugation with BSA renders a highly negative zeta potential to the previously uncharged pyrene which favors the assembly formation by electrostatic interaction with a positively charged polyelectrolyte, chitosan (at acidic pH). The growth of the assembly was followed by monitoring pyrene absorbance with successive layer deposition. The thin film assembly was demonstrated to be capable of releasing its hydrophobic cargo under physiological conditions. We demonstrated the applicability of this approach by encapsulating a water-insoluble drug, curcumin. These assemblies were further loaded with the anti-cancer drug Doxorubicin. Biocompatible calcium carbonate microparticles were used for capsule preparation. The porous nature of the microparticles allows for the pre-encapsulation of therapeutic macromolecules like protein. The fabrication of protein encapsulated stable microcapsules with hydrophobic molecules incorporated into the shell of the microcapsules has been demonstrated. The microcapsules were further capable of loading hydrophilic molecules like Rhodamine B. Thus, using the approach described, a multi-agent carrier for hydrophobic and hydrophilic drugs as well as therapeutic macromolecules can be envisioned.
Resumo:
The early stages of plasticity in KBr single crystals have been studied by means of nano-meter-scale indentation in complementary experiments using both a nanoindenter and an atomic force microscope. Nanoindentafion experiments precisely correlate indentation depth and forces, while force microscopy provides high-resolution force measurements and images of the surface revealing dislocation activity. The two methods provide very similar results for the onset of plasticity in KBr. Upon loading we observe yield of the surface in atomic layer units which we attribute to the nucleation of single dislocations. Unloading is accompanied by plastic recovery as evident from a non-linear force distance unloading curve and delayed discrete plasticity events.
Resumo:
Anatase titania nanotubes (TNTs) have been synthesized from P25 TiO2 powder by alkali hydrothermal method followed by post annealing. The microstructure analysis by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed the formation of anatase nanotubes with a diameter of 9-10 nm. These NTs are used to make photo anode in dye-sensitized solar cells (DSSCs). Layer by layer deposition with curing of each layer at 350 C is employed to realize films of desired thickness. The performance of these cells is studied using photovoltaic measurements. Electrochemical impedance spectroscopy (EIS) is used to quantitatively analyze the effect of thickness on the performance of these cells. These studies revealed that the thickness of TiO2 has a pronounced impact on the cell performance and the optimum thickness lies in the range of 10-14 mu m. In comparison to dye solar cells made of P25, TNTs based cells exhibit an improved open circuit voltage and fill factor (FF) due to an increased electron lifetime, as revealed by EIS analysis. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
All solid state batteries are essential candidate for miniaturizing the portable electronics devices. Thin film batteries are constructed by layer by layer deposition of electrode materials by physical vapour deposition method. We propose a promising novel method and unique architecture, in which highly porous graphene sheet embedded with SnO2 nanowire could be employed as the anode electrode in lithium ion thin film battery. The vertically standing graphene flakes were synthesized by microwave plasma CVD and SnO2 nanowires based on a vapour-liquid-solid (VLS) mechanism via thermal evaporation at low synthesis temperature (620 degrees C). The graphene sheet/SnO2 nanowire composite electrode demonstrated stable cycling behaviours and delivered a initial high specific discharge capacity of 1335 mAh g(-1) and 900 mAh g(-1) after the 50th cycle. Furthermore, the SnO2 nanowire electrode displayed superior rate capabilities with various current densities.
Resumo:
Using all-atom molecular dynamics (MD) simulations, we have studied the mechanical properties of ZnS/CdS core/shell nanowires. Our results show that the coating of a few-atomic-layer CdS shell on the ZnS nanowire leads to a significant change in the stiffness of the core/shell nanowires compared to the stiffness of pure ZnS nanowires. The binding energy between the core and shell region decreases due to the lattice mismatch at the core-shell interface. This reduction in binding energy plays an important role in determining the stiffness of a core/shell nanowire. We have also investigated the effects of the shell on the thermal conductivity and melting behavior of the nanowires.
Resumo:
A low Schottky barrier height (SBH) at source/drain contact is essential for achieving high drive current in atomic layer MoS(2-)channel-based field effect transistors. Approaches such as choosing metals with appropriate work functions and chemical doping are employed previously to improve the carrier injection from the contact electrodes to the channel and to mitigate the SBH between the MoS2 and metal. Recent experiments demonstrate significant SBH reduction when graphene layer is inserted between metal slab (Ti and Ni) and MoS2. However, the physical or chemical origin of this phenomenon is not yet clearly understood. In this work, density functional theory simulations are performed, employing pseudopotentials with very high basis sets to get insights of the charge transfer between metal and monolayer MoS2 through the inserted graphene layer. Our atomistic simulations on 16 different interfaces involving five different metals (Ti, Ag, Ru, Au, and Pt) reveal that (i) such a decrease in SBH is not consistent among various metals, rather an increase in SBH is observed in case of Au and Pt; (ii) unlike MoS2-metal interface, the projected dispersion of MoS2 remains preserved in any MoS2-graphene- metal system with shift in the bands on the energy axis. (iii) A proper choice of metal (e.g., Ru) may exhibit ohmic nature in a graphene-inserted MoS2-metal contact. These understandings would provide a direction in developing high-performance transistors involving heteroatomic layers as contact electrodes. (c) 2016 AIP Publishing LLC.
Resumo:
ZnO/Si heterojunctions were fabricated by growing ZnO thin films on p-type Si (100) substrate by pulsed laser deposition without buffer layers. The crystallinity of the heterojunction was analyzed by high resolution X-ray diffraction and atomic force microscopy. The optical quality of the film was analyzed by room temperature (RT) photoluminescence measurements. The high intense band to band emission confirmed the high quality of the ZnO thin films on Si. The electrical properties of the junction were studied by temperature dependent current-voltage measurements and RT capacitance-voltage (C-V) analysis. The charge carrier concentration and the barrier height (BH) were calculated, to be 5.6x10(19) cm(-3) and 0.6 eV respectively from the C-V plot. The BH and ideality factor, calculated using the thermionic emission (TE) model, were found to be highly temperature dependent. We observed a much lower value in Richardson constant, 5.19x10(-7)A/cm(2) K-2 than the theoretical value (32 A/cm(2) K-2) for ZnO. This analysis revealed the existence of a Gaussian distribution (GD) with a standard deviation of sigma(2)=0.035 V. By implementing the GD to the TE, the values of BH and Richardson constant were obtained as 1.3 eV and 39.97 A/cm(2) K-2 respectively from the modified Richardson plot. The obtained Richardson constant value is close to the theoretical value for n-ZnO. These high quality heterojunctions can be used for solar cell applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A molecule having a ketone group between two thiophene groups was synthesized. Presence of alternating electron donating and accepting moieties gives this material a donor-acceptor-donor (DAD) architecture. PolyDAD was synthesized from DAD monomer by oxidative polymerization. Device quality films of polyDAD were fabricated using pulsed laser deposition technique. X-ray photoelectron spectroscopy (XPS) and fourier transform infrared spectra (FTIR) data of both as synthesized and film indicate the material does not degrade during ablation. Optical band gap was determined to be about 1.45 eV. Four orders of magnitude increase in conductivity was observed from as synthesized to pulsed laser deposition (PLD) fabricated film of polyDAD. Annealing of polyDAD films increase conductivity, indicating better ordering of the molecules upon heating. Rectifying devices were fabricated from polyDAD, and preliminary results are discussed.
Resumo:
Abstract: We report the growth and the electron cyclotron resonance measurements of n-type Si/Si0.62Ge0.38 and Si0.94Ge0.06/Si0.62Ge0.38 modulation-doped heterostructures grown by rapid thermal chemical vapor deposition. The strained Si and Si0.94Ge0.06 channels were grown on relaxed Si0.62Ge0.38 buffer layers, which consist of 0.6 mu m uniform Si0.62Ge0.38 layers and 0.5 mu m compositionally graded relaxed SiGe layers from 0 to 38% Ge. The buffer layers were annealed at 800 degrees C for 1 h to obtain complete relaxation. A 75 Angstrom Si(SiGe) channel with a 100 Angstrom spacer and a 300 Angstrom 2 X 10(19) cm(-3) n-type supply layer was grown on the top of the buffer layers. The cross-sectional transmission electron microscope reveals that the dense dislocation network is confined to the buffer layer, and relatively few dislocations terminate on the surface. The plan-view image indicates the threading dislocation density is about 4 X 10(6) cm(-2). The far-infrared measurements of electron cyclotron resonance were performed at 4 K with the magnetic field of 4-8 T. The effective masses determined from the slope of the center frequency of the absorption peak versus applied magnetic field plot are 0.203m(0) and 0.193m(0) for the two dimensional electron gases in the Si and Si0.94Ge0.06 channels, respectively. The Si effective mass is very close to that of a two dimensional electron gas in an Si MOSFET (0.198m(0)). The electron effective mass of Si0.94Ge0.06 is reported for the first time and is about 5% lower than that of pure Si.
Resumo:
Self-contained Non-Equilibrium Molecular Dynamics (NEMD) simulations using Lennard-Jones potentials were performed to identify the origin and mechanisms of atomic scale interfacial behavior between sliding metals. The mixing sequence and velocity profiles were compared via MD simulations for three cases, viz.: sell-mated, similar and hard-softvcrystal pairs. The results showed shear instability, atomic scale mixing, and generation of eddies at the sliding interface. Vorticity at the interface suggests that atomic flow during sliding is similar to fluid flow under Kelvin-Helmholtz instability and this is supported by velocity profiles from the simulations. The initial step-function velocity profile spreads during sliding. However the velocity profile does not change much at later stages of the simulation and it eventually stops spreading. The steady state friction coefficient during simulation was monitored as a function of sliding velocity. Frictional behavior can be explained on the basis of plastic deformation and adiabatic effects. The mixing layer growth kinetics was also investigated.