5 resultados para Atmospheric composition
em Indian Institute of Science - Bangalore - Índia
Resumo:
Atmospheric chemistry is a branch of atmospheric science where major focus is the composition of the Earth's atmosphere. Knowledge of atmospheric composition is essential due to its interaction with (solar and terrestrial) radiation and interactions of atmospheric species (gaseous and particulate matter) with living organisms. Since atmospheric chemistry covers a vast range of topics, in this article the focus is on the chemistry of atmospheric aerosols with special emphasis on the Indian region. I present a review of the current state of knowledge of aerosol chemistry in India and propose future directions.
Resumo:
The paper presents the importance of the Nocturnal Boundary Layer in driving the diurnal variability of the atmospheric CO2 mixing ratio and the carbon isotope ratio at ground level from an urban station in India. Our observations are the first of their kind from this region. The atmospheric CO2 mixing ratio and the carbon isotopic ratio were measured for both the morning (05:30-07:30 IST) and afternoon time (16:00-18:00 IST) air samples at 5 m above ground level in Bangalore city, Karnataka State (12 degrees 58' N, 77 degrees 38' E, masl = 920 m) for a 10 day period during the winter of 2008. We observed a change of similar to 7% the in CO2 mixing ratio between the morning and afternoon time air samples. A stable isotope analysis of CO2 from morning samples showed a depletion in the carbon isotope ratio by similar to 2 parts per thousand compared to the afternoon samples. Along with the ground-based measurement of air samples, data of radiosonde measurements were also obtained from the Indian Meteorological Department to identify the vertical atmospheric structure at different time in a day. We proposed the presence or absence of the NBL as a controlling factor for the observed variability in the mixing ratio as well as its isotopic composition. Here we used the Keeling model approach to find out the carbon isotope ratio for the local sources. The local sources have further been characterized as anthropogenic and biological respiration (in %) using a two-component mixing model. We also used a vertical mixing model based on the concept of the mixing of isotopically depleted (carbon isotope) ``polluted air'' (PA) with isotopically enriched ``free atmospheric air'' (FA) above. Using this modeling approach, the contribution of FA at ground level is being estimated for both the morning and afternoon time air samples.
Resumo:
We present here, an experimental set-up developed for the first time in India for the determination of mixing ratio and carbon isotopic ratio of air-CO2. The set-up includes traps for collection and extraction of CO2 from air samples using cryogenic procedures, followed by the measurement of CO2 mixing ratio using an MKS Baratron gauge and analysis of isotopic ratios using the dual inlet peripheral of a high sensitivity isotope ratio mass spectrometer (IRMS) MAT 253. The internal reproducibility (precision) for the PC measurement is established based on repeat analyses of CO2 +/- 0.03 parts per thousand. The set-up is calibrated with international carbonate and air-CO2 standards. An in-house air-CO2 mixture, `OASIS AIRMIX' is prepared mixing CO2 from a high purity cylinder with O-2 and N-2 and an aliquot of this mixture is routinely analyzed together with the air samples. The external reproducibility for the measurement of the CO2 mixing ratio and carbon isotopic ratios are +/- 7 (n = 169) mu mol.mol(-1) and +/- 0.05 (n = 169) parts per thousand based on the mean of the difference between two aliquots of reference air mixture analyzed during daily operation carried out during November 2009-December 2011. The correction due to the isobaric interference of N2O on air-CO2 samples is determined separately by analyzing mixture of CO2 (of known isotopic composition) and N2O in varying proportions. A +0.2 parts per thousand correction in the delta C-13 value for a N2O concentration of 329 ppb is determined. As an application, we present results from an experiment conducted during solar eclipse of 2010. The isotopic ratio in CO2 and the carbon dioxide mixing ratio in the air samples collected during the event are different from neighbouring samples, suggesting the role of atmospheric inversion in trapping the emitted CO2 from the urban atmosphere during the eclipse.
Resumo:
Recent studies, over regions influenced by biomass burning aerosol, have shown that it is possible to define a critical cloud fraction' (CCF) at which the aerosol direct radiative forcing switch from a cooling to a warming effect. Using 4 years of multi-satellite data analysis, we show that CCF varies with aerosol composition and changed from 0.28 to 0.13 from postmonsoon to winter as a result of shift from less absorbing to moderately absorbing aerosol. Our results indicate that we can estimate aerosol absorption from space using independently measured top of the atmosphere (TOA) fluxes Cloud Aerosol Lidar with Orthogonal Polarization-Moderate resolution Imaging Spectroradiometer-Clouds and the Earth's Radiant Energy System (CALIPSO-MODIS-CERES)] combined algorithms for example.
Resumo:
This work presents a detailed experimental and numerical investigation of the effect of H-2/CO composition on extinction characteristics of premixed and nonpremixed syngas flames. Experimental measurements of local and global extinction strain rates in counterflow diffusion flames have been reported at atmospheric pressure for six different compositions of syngas fuel. The concentration of H-2 was varied from 5 to 20% with a 3% increment, and correspondingly, CO was decreased from 35 to 20% in steps of 3%. Particle imaging velocimetry has been used to determine the local extinction strain rates. Local extinction strain rates increased with an increase in the H-2/CO ratio in both nonpremixed and premixed flames. The predicted extinction strain rates for both nonpremixed and premixed counterflow flames using five different mechanisms available in the literature were compared with measurements. The Davis H-2/CO and Ranzi H-2/CO mechanisms predicted extinction strain rates within 10% of experimental values irrespective of the H-2/CO ratio. In the nonpremixed case, the Cl mechanism by Li et al., GRI 3.0, and the Ranzi H-2/CO mechanism predicted extinction strain rates well for low H-2/CO ratios (from 5:35 to 14:26) but deviated from experiments for higher H-2/CO values (17:23 and 20:20). In addition to kinetics, preferential diffusion effects were found to affect the reaction zone significantly and create distinct localized reaction zone structures in nonpremixed flames, which could contribute to discrepancies in extinction predictions.