20 resultados para Artificial immune systems

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a method for the tuning the membership functions of a Mamdani type Fuzzy Logic Controller (FLC) using the Clonal Selection Algorithm(CSA) a model of the Artificial Immune System(AIS) paradigm is examined. FLC's are designed for two problems, firstly the linear cart centering problem and secondly the highly nonlinear inverted pendulum problem. The FLC tuned by AIS is compared with FLC tuned by GA. In order to check the robustness of the designed PLC's white noise was added to the system, further, the masses of the cart and the length and mass of the pendulum are changed. The PLC's were also tested in the presence of faulty rules. Finally, Kruskal Wallis test was performed to compare the performance of the GA and AIS. An insight into the algorithms are also given by studying the effect of the important parameters of GA and AIS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new hierarchical clustering algorithm for crop stage classification using hyperspectral satellite image. Amongst the multiple benefits and uses of remote sensing, one of the important application is to solve the problem of crop stage classification. Modern commercial imaging satellites, owing to their large volume of satellite imagery, offer greater opportunities for automated image analysis. Hence, we propose a unsupervised algorithm namely Hierarchical Artificial Immune System (HAIS) of two steps: splitting the cluster centers and merging them. The high dimensionality of the data has been reduced with the help of Principal Component Analysis (PCA). The classification results have been compared with K-means and Artificial Immune System algorithms. From the results obtained, we conclude that the proposed hierarchical clustering algorithm is accurate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we present a generic method/model for multi-objective design optimization of laminated composite components, based on Vector Evaluated Artificial Bee Colony (VEABC) algorithm. VEABC is a parallel vector evaluated type, swarm intelligence multi-objective variant of the Artificial Bee Colony algorithm (ABC). In the current work a modified version of VEABC algorithm for discrete variables has been developed and implemented successfully for the multi-objective design optimization of composites. The problem is formulated with multiple objectives of minimizing weight and the total cost of the composite component to achieve a specified strength. The primary optimization variables are the number of layers, its stacking sequence (the orientation of the layers) and thickness of each layer. The classical lamination theory is utilized to determine the stresses in the component and the design is evaluated based on three failure criteria: failure mechanism based failure criteria, maximum stress failure criteria and the tsai-wu failure criteria. The optimization method is validated for a number of different loading configurations-uniaxial, biaxial and bending loads. The design optimization has been carried for both variable stacking sequences, as well fixed standard stacking schemes and a comparative study of the different design configurations evolved has been presented. Finally the performance is evaluated in comparison with other nature inspired techniques which includes Particle Swarm Optimization (PSO), Artificial Immune System (AIS) and Genetic Algorithm (GA). The performance of ABC is at par with that of PSO, AIS and GA for all the loading configurations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dial-a-ride problem (DARP) is an optimization problem which deals with the minimization of the cost of the provided service where the customers are provided a door-to-door service based on their requests. This optimization model presented in earlier studies, is considered in this study. Due to the non-linear nature of the objective function the traditional optimization methods are plagued with the problem of converging to a local minima. To overcome this pitfall we use metaheuristics namely Simulated Annealing (SA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Artificial Immune System (AIS). From the results obtained, we conclude that Artificial Immune System method effectively tackles this optimization problem by providing us with optimal solutions. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the application of vector spaces over Galois fields, for obtaining a formal description of a picture in the form of a very compact, non-redundant, unique syntactic code. Two different methods of encoding are described. Both these methods consist in identifying the given picture as a matrix (called picture matrix) over a finite field. In the first method, the eigenvalues and eigenvectors of this matrix are obtained. The eigenvector expansion theorem is then used to reconstruct the original matrix. If several of the eigenvalues happen to be zero this scheme results in a considerable compression. In the second method, the picture matrix is reduced to a primitive diagonal form (Hermite canonical form) by elementary row and column transformations. These sequences of elementary transformations constitute a unique and unambiguous syntactic code-called Hermite code—for reconstructing the picture from the primitive diagonal matrix. A good compression of the picture results, if the rank of the matrix is considerably lower than its order. An important aspect of this code is that it preserves the neighbourhood relations in the picture and the primitive remains invariant under translation, rotation, reflection, enlargement and replication. It is also possible to derive the codes for these transformed pictures from the Hermite code of the original picture by simple algebraic manipulation. This code will find extensive applications in picture compression, storage, retrieval, transmission and in designing pattern recognition and artificial intelligence systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The presence of a large number of spectral bands in the hyperspectral images increases the capability to distinguish between various physical structures. However, they suffer from the high dimensionality of the data. Hence, the processing of hyperspectral images is applied in two stages: dimensionality reduction and unsupervised classification techniques. The high dimensionality of the data has been reduced with the help of Principal Component Analysis (PCA). The selected dimensions are classified using Niche Hierarchical Artificial Immune System (NHAIS). The NHAIS combines the splitting method to search for the optimal cluster centers using niching procedure and the merging method is used to group the data points based on majority voting. Results are presented for two hyperspectral images namely EO-1 Hyperion image and Indian pines image. A performance comparison of this proposed hierarchical clustering algorithm with the earlier three unsupervised algorithms is presented. From the results obtained, we deduce that the NHAIS is efficient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the approach for assigning cooperative communication of Uninhabited Aerial Vehicles (UAV) to perform multiple tasks on multiple targets is posed as a combinatorial optimization problem. The multiple task such as classification, attack and verification of target using UAV is employed using nature inspired techniques such as Artificial Immune System (AIS), Particle Swarm Optimization (PSO) and Virtual Bee Algorithm (VBA). The nature inspired techniques have an advantage over classical combinatorial optimization methods like prohibitive computational complexity to solve this NP-hard problem. Using the algorithms we find the best sequence in which to attack and destroy the targets while minimizing the total distance traveled or the maximum distance traveled by an UAV. The performance analysis of the UAV to classify, attack and verify the target is evaluated using AIS, PSO and VBA.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Artificial Neural Networks (ANNs) are being used to solve a variety of problems in pattern recognition, robotic control, VLSI CAD and other areas. In most of these applications, a speedy response from the ANNs is imperative. However, ANNs comprise a large number of artificial neurons, and a massive interconnection network among them. Hence, implementation of these ANNs involves execution of computer-intensive operations. The usage of multiprocessor systems therefore becomes necessary. In this article, we have presented the implementation of ART1 and ART2 ANNs on ring and mesh architectures. The overall system design and implementation aspects are presented. The performance of the algorithm on ring, 2-dimensional mesh and n-dimensional mesh topologies is presented. The parallel algorithm presented for implementation of ART1 is not specific to any particular architecture. The parallel algorithm for ARTE is more suitable for a ring architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complex web of interactions between the host immune system and the pathogen determines the outcome of any infection. A computational model of this interaction network, which encodes complex interplay among host and bacterial components, forms a useful basis for improving the understanding of pathogenesis, in filling knowledge gaps and consequently to identify strategies to counter the disease. We have built an extensive model of the Mycobacterium tuberculosis host-pathogen interactome, consisting of 75 nodes corresponding to host and pathogen molecules, cells, cellular states or processes. Vaccination effects, clearance efficiencies due to drugs and growth rates have also been encoded in the model. The system is modelled as a Boolean network. Virtual deletion experiments, multiple parameter scans and analysis of the system's response to perturbations, indicate that disabling processes such as phagocytosis and phagolysosome fusion or cytokines such as TNF-alpha and IFN-gamma, greatly impaired bacterial clearance, while removing cytokines such as IL-10 alongside bacterial defence proteins such as SapM greatly favour clearance. Simulations indicate a high propensity of the pathogen to persist under different conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complex web of interactions between the host immune system and the pathogen determines the outcome of any infection. A computational model of this interaction network, which encodes complex interplay among host and bacterial components, forms a useful basis for improving the understanding of pathogenesis, in filling knowledge gaps and consequently to identify strategies to counter the disease. We have built an extensive model of the Mycobacterium tuberculosis host-pathogen interactome, consisting of 75 nodes corresponding to host and pathogen molecules, cells, cellular states or processes. Vaccination effects, clearance efficiencies due to drugs and growth rates have also been encoded in the model. The system is modelled as a Boolean network. Virtual deletion experiments, multiple parameter scans and analysis of the system's response to perturbations, indicate that disabling processes such as phagocytosis and phagolysosome fusion or cytokines such as TNF-alpha and IFN-gamma, greatly impaired bacterial clearance, while removing cytokines such as IL-10 alongside bacterial defence proteins such as SapM greatly favour clearance. Simulations indicate a high propensity of the pathogen to persist under different conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deterministic models have been widely used to predict water quality in distribution systems, but their calibration requires extensive and accurate data sets for numerous parameters. In this study, alternative data-driven modeling approaches based on artificial neural networks (ANNs) were used to predict temporal variations of two important characteristics of water quality chlorine residual and biomass concentrations. The authors considered three types of ANN algorithms. Of these, the Levenberg-Marquardt algorithm provided the best results in predicting residual chlorine and biomass with error-free and ``noisy'' data. The ANN models developed here can generate water quality scenarios of piped systems in real time to help utilities determine weak points of low chlorine residual and high biomass concentration and select optimum remedial strategies.