37 resultados para Artificial Intelligence

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Dissolved Gas Analysis (DGA) a non destructive test procedure, has been in vogue for a long time now, for assessing the status of power and related transformers in service. An early indication of likely internal faults that may exist in Transformers has been seen to be revealed, to a reasonable degree of accuracy by the DGA. The data acquisition and subsequent analysis needs an expert in the concerned area to accurately assess the condition of the equipment. Since the presence of the expert is not always guaranteed, it is incumbent on the part of the power utilities to requisition a well planned and reliable artificial expert system to replace, at least in part, an expert. This paper presents the application of Ordered Ant Mner (OAM) classifier for the prediction of involved fault. Secondly, the paper also attempts to estimate the remaining life of the power transformer as an extension to the elapsed life estimation method suggested in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With increased number of new services and users being added to the communication network, management of such networks becomes crucial to provide assured quality of service. Finding skilled managers is often a problem. To alleviate this problem and also to provide assistance to the available network managers, network management has to be automated. Many attempts have been made in this direction and it is a promising area of interest to researchers in both academia and industry. In this paper, a review of the management complexities in present day networks and artificial intelligence approaches to network management are presented. Published by Elsevier Science B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As power systems grow in their size and interconnections, their complexity increases. Rising costs due to inflation and increased environmental concerns has made transmission, as well as generation systems be operated closer to design limits. Hence power system voltage stability and voltage control are emerging as major problems in the day-to-day operation of stressed power systems. For secure operation and control of power systems under normal and contingency conditions it is essential to provide solutions in real time to the operator in energy control center (ECC). Artificial neural networks (ANN) are emerging as an artificial intelligence tool, which give fast, though approximate, but acceptable solutions in real time as they mostly use the parallel processing technique for computation. The solutions thus obtained can be used as a guide by the operator in ECC for power system control. This paper deals with development of an ANN architecture, which provide solutions for monitoring, and control of voltage stability in the day-to-day operation of power systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an off-line (finite time interval) and on-line learning direct adaptive neural controller for an unstable helicopter. The neural controller is designed to track pitch rate command signal generated using the reference model. A helicopter having a soft inplane four-bladed hingeless main rotor and a four-bladed tail rotor with conventional mechanical controls is used for the simulation studies. For the simulation study, a linearized helicopter model at different straight and level flight conditions is considered. A neural network with a linear filter architecture trained using backpropagation through time is used to approximate the control law. The controller network parameters are adapted using updated rules Lyapunov synthesis. The off-line trained (for finite time interval) network provides the necessary stability and tracking performance. The on-line learning is used to adapt the network under varying flight conditions. The on-line learning ability is demonstrated through parameter uncertainties. The performance of the proposed direct adaptive neural controller (DANC) is compared with feedback error learning neural controller (FENC).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In an earlier paper (Part I) we described the construction of Hermite code for multiple grey-level pictures using the concepts of vector spaces over Galois Fields. In this paper a new algebra is worked out for Hermite codes to devise algorithms for various transformations such as translation, reflection, rotation, expansion and replication of the original picture. Also other operations such as concatenation, complementation, superposition, Jordan-sum and selective segmentation are considered. It is shown that the Hermite code of a picture is very powerful and serves as a mathematical signature of the picture. The Hermite code will have extensive applications in picture processing, pattern recognition and artificial intelligence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the application of vector spaces over Galois fields, for obtaining a formal description of a picture in the form of a very compact, non-redundant, unique syntactic code. Two different methods of encoding are described. Both these methods consist in identifying the given picture as a matrix (called picture matrix) over a finite field. In the first method, the eigenvalues and eigenvectors of this matrix are obtained. The eigenvector expansion theorem is then used to reconstruct the original matrix. If several of the eigenvalues happen to be zero this scheme results in a considerable compression. In the second method, the picture matrix is reduced to a primitive diagonal form (Hermite canonical form) by elementary row and column transformations. These sequences of elementary transformations constitute a unique and unambiguous syntactic code-called Hermite code—for reconstructing the picture from the primitive diagonal matrix. A good compression of the picture results, if the rank of the matrix is considerably lower than its order. An important aspect of this code is that it preserves the neighbourhood relations in the picture and the primitive remains invariant under translation, rotation, reflection, enlargement and replication. It is also possible to derive the codes for these transformed pictures from the Hermite code of the original picture by simple algebraic manipulation. This code will find extensive applications in picture compression, storage, retrieval, transmission and in designing pattern recognition and artificial intelligence systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the use of Genetic Programming (GP) to create an approximate model for the non-linear relationship between flexural stiffness, length, mass per unit length and rotation speed associated with rotating beams and their natural frequencies. GP, a relatively new form of artificial intelligence, is derived from the Darwinian concept of evolution and genetics and it creates computer programs to solve problems by manipulating their tree structures. GP predicts the size and structural complexity of the empirical model by minimizing the mean square error at the specified points of input-output relationship dataset. This dataset is generated using a finite element model. The validity of the GP-generated model is tested by comparing the natural frequencies at training and at additional input data points. It is found that by using a non-dimensional stiffness, it is possible to get simple and accurate function approximation for the natural frequency. This function approximation model is then used to study the relationships between natural frequency and various influencing parameters for uniform and tapered beams. The relations obtained with GP model agree well with FEM results and can be used for preliminary design and structural optimization studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article proposes a three-timescale simulation based algorithm for solution of infinite horizon Markov Decision Processes (MDPs). We assume a finite state space and discounted cost criterion and adopt the value iteration approach. An approximation of the Dynamic Programming operator T is applied to the value function iterates. This 'approximate' operator is implemented using three timescales, the slowest of which updates the value function iterates. On the middle timescale we perform a gradient search over the feasible action set of each state using Simultaneous Perturbation Stochastic Approximation (SPSA) gradient estimates, thus finding the minimizing action in T. On the fastest timescale, the 'critic' estimates, over which the gradient search is performed, are obtained. A sketch of convergence explaining the dynamics of the algorithm using associated ODEs is also presented. Numerical experiments on rate based flow control on a bottleneck node using a continuous-time queueing model are performed using the proposed algorithm. The results obtained are verified against classical value iteration where the feasible set is suitably discretized. Over such a discretized setting, a variant of the algorithm of [12] is compared and the proposed algorithm is found to converge faster.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Design creativity involves developing novel and useful solutions to design problems The research in this article is an attempt to understand how novelty of a design resulting from a design process is related to the kind of outcomes. described here as constructs, involved in the design process A model of causality, the SAPPhIRE model, is used as the basis of the analysis The analysis is based on previous research that shows that designing involves development and exploration of the seven basic constructs of the SAPPhIRE model that constitute the causal connection between the various levels of abstraction at which a design can be described The constructs am state change, action, parts. phenomenon. input. organs. and effect The following two questions are asked. Is there a relationship between novelty and the constructs? If them is a relationship, what is the degree of this relationship? A hypothesis is developed to answer the questions an increase in the number and variety of ideas explored while designing should enhance the variety of concept space. leading to an increase in the novelty of the concept space Eight existing observational studies of designing sessions are used to empirically validate the hypothesis Each designing session involves an individual designer. experienced or novice. solving a design problem by producing concepts and following a think-aloud protocol. The results indicate dependence of novelty of concept space on variety of concept space and dependence of variety of concept space on variety of idea space. thereby validating the hypothesis The Jesuits also reveal a strong correlation between novelty and the constructs, correlation value decreases as the abstraction level of the constructs reduces. signifying the importance of using constructs at higher abstraction levels for enhancing novelty

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Design research informs and supports practice by developing knowledge to improve the chances of producing successful products.Training in design research has been poorly supported. Design research uses human and natural/technical sciences, embracing all facets of design; its methods and tools are adapted from both these traditions. However, design researchers are rarely trained in methods from both the traditions. Research in traditional sciences focuses primarily on understanding phenomena related to human, natural, or technical systems. Design research focuses on supporting improvement of such systems, using understanding as a necessary but not sufficient step, and it must embrace methods for both understanding reality and developing support for its improvement. A one-semester, postgraduate-level, credited course that has been offered since 2002, entitled Methodology for Design Research, is described that teaches a methodology for carrying out research into design. Its steps are to clarify research success; to understand relevant phenomena of design and how these influence success; to use this to envision design improvement and develop proposals for supporting improvement; to evaluate support for its influence on success; and, if unacceptable, to modify, support, or improve the understanding of success and its links to the phenomena of design. This paper highlights some major issues about the status of design research and describes how design research methodology addresses these. The teaching material, model of delivery, and evaluation of the course on methodology for design research are discussed.

Relevância:

60.00% 60.00%

Publicador: