82 resultados para Art objects, Classical.
em Indian Institute of Science - Bangalore - Índia
Resumo:
Flexible objects such as a rope or snake move in a way such that their axial length remains almost constant. To simulate the motion of such an object, one strategy is to discretize the object into large number of small rigid links connected by joints. However, the resulting discretised system is highly redundant and the joint rotations for a desired Cartesian motion of any point on the object cannot be solved uniquely. In this paper, we revisit an algorithm, based on the classical tractrix curve, to resolve the redundancy in such hyper-redundant systems. For a desired motion of the `head' of a link, the `tail' is moved along a tractrix, and recursively all links of the discretised objects are moved along different tractrix curves. The algorithm is illustrated by simulations of a moving snake, tying of knots with a rope and a solution of the inverse kinematics of a planar hyper-redundant manipulator. The simulations show that the tractrix based algorithm leads to a more `natural' motion since the motion is distributed uniformly along the entire object with the displacements diminishing from the `head' to the `tail'.
Resumo:
A new and efficient approach to construct a 3D wire-frame of an object from its orthographic projections is described. The input projections can be two or more and can include regular and complete auxiliary views. Each view may contain linear, circular and other conic sections. The output is a 3D wire-frame that is consistent with the input views. The approach can handle auxiliary views containing curved edges. This generality derives from a new technique to construct 3D vertices from the input 2D vertices (as opposed to matching coordinates that is prevalent in current art). 3D vertices are constructed by projecting the 2D vertices in a pair of views on the common line of the two views. The construction of 3D edges also does not require the addition of silhouette and tangential vertices and subsequently splitting edges in the views. The concepts of complete edges and n-tuples are introduced to obviate this need. Entities corresponding to the 3D edge in each view are first identified and the 3D edges are then constructed from the information available with the matching 2D edges. This allows the algorithm to handle conic sections that are not parallel to any of the viewing directions. The localization of effort in constructing 3D edges is the source of efficiency of the construction algorithm as it does not process all potential 3D edges. Working of the algorithm on typical drawings is illustrated. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
For one-dimensional flexible objects such as ropes, chains, hair, the assumption of constant length is realistic for large-scale 3D motion. Moreover, when the motion or disturbance at one end gradually dies down along the curve defining the one-dimensional flexible objects, the motion appears ``natural''. This paper presents a purely geometric and kinematic approach for deriving more natural and length-preserving transformations of planar and spatial curves. Techniques from variational calculus are used to determine analytical conditions and it is shown that the velocity at any point on the curve must be along the tangent at that point for preserving the length and to yield the feature of diminishing motion. It is shown that for the special case of a straight line, the analytical conditions lead to the classical tractrix curve solution. Since analytical solutions exist for a tractrix curve, the motion of a piecewise linear curve can be solved in closed-form and thus can be applied for the resolution of redundancy in hyper-redundant robots. Simulation results for several planar and spatial curves and various input motions of one end are used to illustrate the features of motion damping and eventual alignment with the perturbation vector.
Resumo:
Music signals comprise of atomic notes drawn from a musical scale. The creation of musical sequences often involves splicing the notes in a constrained way resulting in aesthetically appealing patterns. We develop an approach for music signal representation based on symbolic dynamics by translating the lexicographic rules over a musical scale to constraints on a Markov chain. This source representation is useful for machine based music synthesis, in a way, similar to a musician producing original music. In order to mathematically quantify user listening experience, we study the correlation between the max-entropic rate of a musical scale and the subjective aesthetic component. We present our analysis with examples from the south Indian classical music system.
Resumo:
An accretion flow is necessarily transonic around a black hole.However, around a neutron star it may or may not be transonic, depending on the inner disk boundary conditions influenced by the neutron star. I will discuss various transonic behavior of the disk fluid in general relativistic (or pseudo general relativistic) framework. I will address that there are four types of sonic/critical point. possible to form in an accretion disk. It will be shown that how the fluid properties including location of sonic point's vary with angular momentum of the compact object which controls the overall disk dynamics and outflows.
Resumo:
This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general two-, three-systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. We also present novel methods for the determination of the principal screws for four-, five-systems which do not require the explicit computation of the reciprocal systems. Principal screws of the systems of different orders are identified from one uniform criterion, namely that the pitches of the principal screws are the extreme values of the pitch.The classical results of screw theory, namely the equations for the cylindroid and the pitch-hyperboloid associated with the two-and three-systems, respectively have been derived within the proposed framework. Algebraic conditions have been derived for some of the special screw systems. The formulation is also illustrated with several examples including two spatial manipulators of serial and parallel architecture, respectively.
Resumo:
Vermicular graphite cast iron is a new addition to the family of cast irons. Various methods for producing vermicular graphite cast iron are briefly discussed in this paper. The mechanical and physical properties of cast irons with vermicular graphite have been found to be intermediate between those of gray and ductile irons. Other properties such as casting characteristics, scaling resistance, damping capacity and machinability have been compared with those of gray and ductile irons. Probable applications of vermicular graphite cast irons are suggested.
Resumo:
This paper deals with new results obtained in regard to the reconstruction properties of side-band Fresnel holograms (SBFH) of self-imaging type objects (for example, gratings) as compared with those of general objects. The major finding is that a distribution I2, which appears on the real-image plane along with the conventional real-image I1, remains a 2Z distribution (where 2Z is the axial distance between the object and its self-imaging plane) under a variety of situations, while its nature and focusing properties differ from one situation to another. It is demonstrated that the two distributions I1 and I2 can be used in the development of a novel technique for image subtraction.
Resumo:
Based on a Hamiltonian description we present a rigorous derivation of the transient state work fluctuation theorem and the Jarzynski equality for a classical harmonic oscillator linearly coupled to a harmonic heat bath, which is dragged by an external agent. Coupling with the bath makes the dynamics dissipative. Since we do not assume anything about the spectral nature of the harmonic bath the derivation is not restricted only to the Ohmic bath, rather it is more general, for a non-Ohmic bath. We also derive expressions of the average work done and the variance of the work done in terms of the two-time correlation function of the fluctuations of the position of the harmonic oscillator. In the case of an Ohmic bath, we use these relations to evaluate the average work done and the variance of the work done analytically and verify the transient state work fluctuation theorem quantitatively. Actually these relations have far-reaching consequences. They can be used to numerically evaluate the average work done and the variance of the work done in the case of a non-Ohmic bath when analytical evaluation is not possible.
Resumo:
We consider models for the rheology of dense, slowly deforming granular materials based of classical and Cosserat plasticity, and their viscoplastic extensions that account for small but finite particle inertia. We determine the scale for the viscosity by expanding the stress in a dimensionless parameter that is a measure of the particle inertia. We write the constitutive relations for classical and Cosserat plasticity in stress-explicit form. The viscoplastic extensions are made by adding a rate-dependent viscous stress to the plasticity stress. We apply the models to plane Couette flow, and show that the classical plasticity and viscoplasticity models have features that depart from experimental observations; the prediction of the Cosserat viscoplasticity model is qualitatively similar to that of Cosserat plasticity, but the viscosities modulate the thickness of the shear layer.
Resumo:
1H NMR spin-lattice relaxation time (T1) studies have been carried out in the temperature range 100 K to 4 K, at two Larmor frequencies 11.4 and 23.3 MHz, in the mixed system of betaine phosphate and glycine phosphite (BPxGPI(1-x)), to study the effects of disorder on the proton group dynamics. Analysis of T1 data indicates the presence of a number of inequivalent methyl groups and a gradual transition from classical reorientations to quantum tunneling rotations. At lower temperatures, microstructural disorder in the local environments of the methyl groups, result in a distribution in the activation energy (Ea) and the torsional energy gap (E01). For certain values of x, the magnetisation recovery shows biexponential behaviour at lower temperatures.
Resumo:
It is generally known that the orbital diamagnetism of a classical system of charged particles in thermal equilibrium is identically zero —the Bohr-van Leeuwen theorem. Physically, this null result derives from the exact cancellation of the orbital diamagnetic moment associated with the complete cyclotron orbits of the charged particles by the paramagnetic moment subtended by the incomplete orbits skipping the boundary in the opposite sense. Motivated by this crucial but subtle role of the boundary, we have simulated here the case of a finite but unbounded system, namely that of a charged particle moving on the surface of a sphere in the presence of an externally applied uniform magnetic field. Following a real space-time approach based on the classical Langevin equation, we have computed the orbital magnetic moment that now indeed turns out to be non-zero and has the diamagnetic sign. To the best of our knowledge, this is the first report of the possibility of finite classical diamagnetism in principle, and it is due to the avoided cancellation.
Metal-organic framework structures - how closely are they related to classical inorganic structures?
Resumo:
Metal-organic frameworks (MOFs) have emerged as an important family of compounds for which new properties are increasingly being found. The potential for such compounds appears to be immense, especially in catalysis, sorption and separation processes. In order to appreciate the properties and to design newer frameworks it is necessary to understand the structures from a fundamental perspective. The use of node, net and vertex symbols has helped in simplifying some of the complex MOF structures. Many MOF structures are beginning to be described as derived from inorganic structures. In this tutorial review, we have provided the basics of the node, the net and the vertex symbols and have explained some of the MOF structures. In addition, we have also attempted to provide some leads towards designing newer structures/topologies.
Resumo:
Monopoles which are sources of non-Abelian magnetic flux are predicted by many models of grand unification. It has been argued elsewhere that a generic transformation of the "unbroken" symmetry group H cannot be globally implemented on such monopoles for reasons of topology. In this paper, we show that similar topological obstructions are encountered in the mechanics of a test particle in the field of these monopoles and that the transformations of H cannot all be globally implemented as canonical transformations. For the SU(5) model, if H is SU(3)C×U(1)em, a consequence is that color multiplets are not globally defined, while if H is SU(3)C×SU(2)WS×U(1)Y, the same is the case for both color and electroweak multiplets. There are, however, several subgroups KT, KT′,… of H which can be globally implemented, with the transformation laws of the observables differing from group to group in a novel way. For H=SU(3)C×U(1)em, a choice for KT is SU(2)C×U(1)em, while for H=SU(3)C×SU(2)WS×U(1)Y, a choice is SU(2)C×U(1)×U(1)×U(1). The paper also develops the differential geometry of monopoles in a form convenient for computations.
Resumo:
We demonstrate the phenomenon stated in the title, using for illustration a two-dimensional scalar-field model with a triple-well potential {fx837-1}. At the classical level, this system supports static topological solitons with finite energy. Upon quantisation, however, these solitons develop infinite energy, which cannot be renormalised away. Thus this quantised model has no soliton sector, even though classical solitons exist. Finally when the model is extended supersymmetrically by adding a Majorana field, finiteness of the soliton energy is recovered.