5 resultados para Army Domestic Technology Transfer Program (U.S.)
em Indian Institute of Science - Bangalore - Índia
Resumo:
Empirical research available on technology transfer initiatives is either North American or European. Literature over the last two decades shows various research objectives such as identifying the variables to be measured and statistical methods to be used in the context of studying university based technology transfer initiatives. AUTM survey data from years 1996 to 2008 provides insightful patterns about the North American technology transfer initiatives, we use this data in our paper. This paper has three sections namely, a comparison of North American Universities with (n=1129) and without Medical Schools (n=786), an analysis of the top 75th percentile of these samples and a DEA analysis of these samples. We use 20 variables. Researchers have attempted to classify university based technology transfer initiative variables into multi-stages, namely, disclosures, patents and license agreements. Using the same approach, however with minor variations, three stages are defined in this paper. The first stage is to do with inputs from R&D expenditure and outputs namely, invention disclosures. The second stage is to do with invention disclosures being the input and patents issued being the output. The third stage is to do with patents issued as an input and technology transfers as outcomes.
Resumo:
There are multiple goals of a technology transfer office (TTO) based in a university system. Whilst commercialization is a critical goal, maintenance and cleaning of the TTO's database needs detailing. Literature in the area is scarce and only some researchers make reference to TTO data cleaning. During an attempt to understand the commercial strategy of a university TTO in Bangalore the challenge of data cleaning was encountered. This paper describes a case study of data cleaning at an Indian university based TTO. 382 patent records were analyzed in the study. The case study first describes the back ground of the university system. Second, the method to clean the data and the experiences encountered are highlighted. Insights drawn indicate that patent data cleaning in a TTO is a specialized area which needs attention. Overlooking this activity can have legal implications and may result in an inability to commercialize the patent. Two levels of patent data cleaning are discussed in this case study. Best practices of data cleaning in academic TTOs are discussed.
Resumo:
India's energy challenges are multi-pronged. They are manifested through growing demand for modern energy carriers, a fossil fuel dominated energy system facing a severe resource crunch, the need for creating access to quality energy for the large section of deprived population, vulnerable energy security, local and global pollution regimes and the need for sustaining economic development. Renewable energy is considered as one of the most promising alternatives. Recognizing this potential, India has been implementing one of the largest renewable energy programmes in the world. Among the renewable energy technologies. bioenergy has a large diverse portfolio including efficient biomass stoves, biogas, biomass combustion and gasification and process heat and liquid fuels. India has also formulated and implemented a number of innovative policies and programmes to promote bioenergy technologies. However, according to some preliminary studies, the success rate is marginal compared to the potential available. This limited success is a clear indicator of the need for a serious reassessment of the bioenergy programme. Further, a realization of the need for adopting a sustainable energy path to address the above challenges will be the guiding force in this reassessment. In this paper an attempt is made to consider the potential of bioenergy to meet the rural energy needs: (I) biomass combustion and gasification for electricity; (2) biomethanation for cooking energy (gas) and electricity; and (3) efficient wood-burning devices for cooking. The paper focuses on analysing the effectiveness of bioenergy in creating this rural energy access and its sustainability in the long run through assessing: the demand for bioenergy and potential that could be created; technologies, status of commercialization and technology transfer and dissemination in India; economic and environmental performance and impacts: bioenergy policies, regulatory measures and barrier analysis. The whole assessment aims at presenting bioenergy as an integral part of a sustainable energy strategy for India. The results show that bioenergy technology (BET) alternatives compare favourably with the conventional ones. The cost comparisons show that the unit costs of BET alternatives are in the range of 15-187% of the conventional alternatives. The climate change benefits in terms of carbon emission reductions are to the tune of 110 T C per year provided the available potential of BETs are utilized.
Resumo:
Improving access to safe drinking water can result in multi-dimensional impacts on people's livelihood. This has been aptly reflected in the Millennium Development Goals (MDG) as one of the major objectives. Despite the availability of diverse and complex set of technologies for water purification, pragmatic and cost-effective use of the same is impeding the use of available sources of water. Hence, in country like India simple low-energy technologies such as solar still are likely to succeed. Solar stills would suffice the basic minimum drinking water requirements of man. Solar stills use sunlight, to kill or inactivate many, if not all, of the pathogens found in water. This paper provides an integrated assessment of the suitability of domestic solar still as a viable safe water technology for India. Also an attempt has been made to critically assess the operational feasibility and costs incurred for using this technology in rural India.