30 resultados para Armored vessels.
em Indian Institute of Science - Bangalore - Índia
Resumo:
The presence of an inert immiscible organic phase in gas�liquid dispersions in stirred vessels influences the interfacial area in a more complex fashion than hitherto reported. As the organic phase fraction is increased, the interfacial area expressed on the basis of a unit volume of dispersion or aqueous phase, first increases, passes through a maximum and then decreases. This trend is observed irrespective of whether the area is determined by chemical means or by physical method. It is found that for low values of inert phase fraction, the average bubble size decreases whereas the gas holdup increases, resulting in increased interfacial area. The lower average bubble size is found to be due to partial prevention of coalescence as the bubbles size generated in the impeller region actually increases with the organic phase fraction. The actual values of interfacial areas depend on the nature of the organic phase. It is also found that the organic phase provides a parallel path for mass transfer to occur, when the solubility of gas in it is high.
Resumo:
Existing models for dmax predict that, in the limit of μd → ∞, dmax increases with 3/4 power of μd. Further, at low values of interfacial tension, dmax becomes independent of σ even at moderate values of μd. However, experiments contradict both the predictions show that dmax dependence on μd is much weaker, and that, even at very low values of σ,dmax does not become independent of it. A model is proposed to explain these results. The model assumes that a drop circulates in a stirred vessel along with the bulk fluid and repeatedly passes through a deformation zone followed by a relaxation zone. In the deformation zone, the turbulent inertial stress tends to deform the drop, while the viscous stress generated in the drop and the interfacial stress resist deformation. The relaxation zone is characterized by absence of turbulent stress and hence the drop tends to relax back to undeformed state. It is shown that a circulating drop, starting with some initial deformation, either reaches a steady state or breaks in one or several cycles. dmax is defined as the maximum size of a drop which, starting with an undeformed initial state for the first cycle, passes through deformation zone infinite number of times without breaking. The model predictions reduce to that of Lagisetty. (1986) for moderate values of μd and σ. The model successfully predicts the reduced dependence of dmax on μd at high values of μd as well as the dependence of dmax on σ at low values of σ. The data available in literature on dmax could be predicted to a greater accuracy by the model in comparison with existing models and correlations.
Resumo:
Existing models for dmax predict that, in the limit of μd → ∞, dmax increases with 3/4 power of μd. Further, at low values of interfacial tension, dmax becomes independent of σ even at moderate values of μd. However, experiments contradict both the predictions show that dmax dependence on μd is much weaker, and that, even at very low values of σ,dmax does not become independent of it. A model is proposed to explain these results. The model assumes that a drop circulates in a stirred vessel along with the bulk fluid and repeatedly passes through a deformation zone followed by a relaxation zone. In the deformation zone, the turbulent inertial stress tends to deform the drop, while the viscous stress generated in the drop and the interfacial stress resist deformation. The relaxation zone is characterized by absence of turbulent stress and hence the drop tends to relax back to undeformed state. It is shown that a circulating drop, starting with some initial deformation, either reaches a steady state or breaks in one or several cycles. dmax is defined as the maximum size of a drop which, starting with an undeformed initial state for the first cycle, passes through deformation zone infinite number of times without breaking. The model predictions reduce to that of Lagisetty. (1986) for moderate values of μd and σ. The model successfully predicts the reduced dependence of dmax on μd at high values of μd as well as the dependence of dmax on σ at low values of σ. The data available in literature on dmax could be predicted to a greater accuracy by the model in comparison with existing models and correlations.
Resumo:
New metallurgical and ethnographic observations of the traditional manufacture of specular high-tin bronze mirrors in Kerala state of southern India are discussed, which is an exceptional example of a surviving craft practice of metal mirror-making in the world. The manufacturing process has been reconstructed from analytical investigations made by Srinivasan following a visit late in 1991 to a mirror making workshop and from her technical studies of equipment acquired by Glover in March 1992 from another group of mirror makers from Pathanamthita at an exhibition held at Crafts Museum, Delhi. Finished and unfinished mirror from two workshops were of a binary, copper-tin alloy of 33% tin which is close to the composition of pure delta phase, so that these mirrors are referred to here as ‘delta’ bronzes. For the first time, metallurgical and field observations were made by Srinivasan in 1991 of the manufacture of high-tin ‘beta’ bonze vessels from Palghat district, Kerala, i‥e of wrought and quenched 23% tin bronze. This has provided the first metallurgical record for a surviving craft of high-tin bronze bowl making which can be directly related to archaeological finds of high-tin bronze vessels from the Indian subcontinent and Southeast Asia. New analytical investigations are presented of high-tin beta bronzes from the Indian subcontinent which are some of the earliest reported worldwide. These coupled with the archaeometallurgical evidence suggests that these high-tin bronze techniques are part of a long, continuing, and probably indigenous tradition of the use of high-tin bronzes in the Indian subcontinent with finds reported even from Indus Valley sites. While the source of tin has been problematic, new evidence on bronze smelting slags and literary evidence suggests there may have been some sources of tin in South India.
Resumo:
Drop breakup inviscous liquids in agitated vessels occurs in elongational flow around impeller blade edges. The drop size distributions measured over extended periods for impellers of different sizes show that breakup process continues up to 15-20 h, before a steady state is reached. The size distributions evolve in a self-similar way till the steady state is reached. The scaled size distributions vary with impeller size and impeller speed, in contrast with the near universal scaling known for drop breakup in turbulent flows. The steady state size of the largest drop follows inverse scaling with impeller tip velocity. The breadth of the scaled size distributions also shows a monotonic relationship with impeller tip velocity only. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Riboflavin tetraacetate-catalyzed aerobic photooxidation of 1-(4-methoxyphenyl)ethanol was investigated as a model reaction under blue visible light in different soft gel materials, aiming to establish their potential as reaction vessels for photochemical transformations. Three strategies involving different degrees of organization of the catalyst within the gel network were explored, and the results compared to those obtained in homogeneous and micellar solutions. In general, physical entrapment of both the catalyst and the substrate under optimized concentrations into several hydrogel matrices (including low-molecular-weight and biopolymer-based gels) allowed the photooxidation with conversions between 55 and 100% within 120 min (TOF similar to 0.045-0.08 min(-1); k(obs) similar to 0.011-0.028 min(-1)), albeit with first-order rates ca. 1-3-fold lower than in solution under comparable non-stirred conditions. Remarkably, the organogel made of a cyclohexane-based bisamide gelator in CH3CN not only prevented the photodegradation of the catalyst but also afforded full conversion in less than 60 min (TOF similar to 0.167 min(-1); k(obs) similar to 0.073 min(-1)) without the need of additional proton transfer mediators (e. g., thiourea) as it occurs in CH3CN solutions. In general, the gelators could be recycled without detriment to their gelation ability and reaction rates. Moreover, kinetics could be fine-tuned according to the characteristics of the gel media. For instance, entangled fibrillar networks with relatively high mechanical strength were usually associated with lower reaction rates, whereas wrinkled laminated morphologies seemed to favor the reaction. In addition, the kinetics results showed in most cases a good correlation with the aeration efficiency of the gel media.
Resumo:
A network of ship-mounted real-time Automatic Weather Stations integrated with Indian geosynchronous satellites Indian National Satellites (INSATs)] 3A and 3C, named Indian National Centre for Ocean Information Services Real-Time Automatic Weather Stations (I-RAWS), is established. The purpose of I-RAWS is to measure the surface meteorological-ocean parameters and transmit the data in real time in order to validate and refine the forcing parameters (obtained from different meteorological agencies) of the Indian Ocean Forecasting System (INDOFOS). Preliminary validation and intercomparison of analyzed products obtained from the National Centre for Medium Range Weather Forecasting and the European Centre for Medium-Range Weather Forecasts using the data collected from I-RAWS were carried out. This I-RAWS was mounted on board oceanographic research vessel Sagar Nidhi during a cruise across three oceanic regimes, namely, the tropical Indian Ocean, the extratropical Indian Ocean, and the Southern Ocean. The results obtained from such a validation and intercomparison, and its implications with special reference to the usage of atmospheric model data for forcing ocean model, are discussed in detail. It is noticed that the performance of analysis products from both atmospheric models is similar and good; however, European Centre for Medium-Range Weather Forecasts air temperature over the extratropical Indian Ocean and wind speed in the Southern Ocean are marginally better.
Resumo:
Fundamental investigations in ultrasonics in India date back to the early 20th century. But, fundamental and applied research in the field of nondestructive evaluation (NDE) came much later. In the last four decades it has grown steadily in academic institutions, national laboratories and industry. Currently, commensurate with rapid industrial growth and realisation of the benefits of NDE, the activity is becoming much stronger, deeper, broader and very wide spread. Acoustic Emission (AE) is a recent entry into the field of nondestructive evaluation. Pioneering efforts in India in AE were carried out at the Indian Institute of Science in the early 1970s. The nuclear industry was the first to utilise it. Current activity in AE in the country spans materials research, incipient failure detection, integrity evaluation of structures, fracture mechanics studies and rock mechanics. In this paper, we attempt to project the current scenario in ultrasonics and acoustic emission research in India.
Resumo:
Closed-form solutions are presented for approximate equations governing the pulsatile flow of blood through models of mild axisymmetric arterial stenosis, taking into account the effect of arterial distensibility. Results indicate the existence of back-flow regions and the phenomenon of flow-reversal in the cross-sections. The effects of pulsatility of flow and elasticity of vessel wall for arterial blood flow through stenosed vessels are determined.
Resumo:
The propagation characteristics of a visco-elastic fluid in a distensible tube tube are studied. The linear visco-elastic nature of the fluid is described by a complex coefficient of viscosity η*. The equation of motion of the vessel wall takes into account the pulsatile nature of the wall. Results are presented for wave propagation velocity, the resistance and the reactance of the fluid and the wall impedance. It is seen that the visco-elastic influence is significant for high values of the frequency of oscillation in various arterial vessels.
Resumo:
Development of a new class of single pan high efficiency, low emission stoves, named gasifier stoves, that promise constant power that can be controlled using any solid biomass fuel in the form of pellets is reported here. These stoves use battery-run fan-based air supply for gasification (primary air) and for combustion (secondary air).Design with the correct secondary air flow ensures near-stoichiometric combustion that allows attainment of peak combustion temperatures with accompanying high water boiling efficiencies (up to 50% for vessels of practical relevance) and very low emissions (of carbon monoxide, particulate matter and oxides of nitrogen). The use of high density agro-residue based pellets or coconut shell pieces ensures operational duration of about an hour or more at power levels of 3 kWth (similar to 12 g/min). The principles involved and the optimization aspects of the design are outlined. The dependence of efficiency and emissions on the design parameters are described. The field imperatives that drive the choice of the rechargeable battery source and the fan are brought out. The implications of developments of Oorja-Plus and OorjaSuper stoves to the domestic cooking scenario of India are briefly discussed. The process development, testing and internal qualification tasks were undertaken by Indian Institute of Science. Product development and the fuel pellet production were dealt with by First Energy Private Ltd.Close interaction at several times during this period has helped progress the project from the laboratory to large scale commercial operation. At this time, over four hundred thousand stoves and 30 kilotonnes fuel have been sold in four states in India.
Resumo:
The winged bean (Psophocarpus tetragonolobus) agglutinin (total lectin) and its basic (WBA I) and acidic isoform (WBA II) were used to analyze capillaries in sections from human muscle. The microvessels were clearly labeled after incubation with the lectins in both normal muscle and in old muscles with age-related type II atrophy or muscle fiber grouping. Muscle fibers, nerves, and connective tissue remained unstained. The total lectin detected muscle capillaries from all blood group AB0 individuals. The isoform WBA I reacted only with blood vessels in blood group A and B individuals, while the blood vessels in blood group 0 individuals were demonstrated with WBA II. WBA I staining was inhibited by p-nitrophenyl α-galactopyranoside and N-acetylgalactosamine, whereas 2′-fucosyllactose and preincubation with an antibody against type-1 chain H abolished capillary staining with WBA II. The study demonstrates the usefulness of WBA as a marker of capillaries in human muscle.