60 resultados para Ardouin, C. (18..-18..) -- Portraits
em Indian Institute of Science - Bangalore - Índia
Resumo:
C21H27NO2, Mr=325.5 , orthorhombic,P21212,, a = 7.516 (2), b = 13.430 (2), c =18.047 (2) A, U= 1821.79 A 3, Z = 4, D x =1.186 Mg m -a, 2(Cu Ka) = 1.5418 A, # = 0.56 mm -1, F(000) = 704, T= 293 K, final R = 0.04 for 1892 reflections with I _> 3a(I). Ring A is planar, and rings B and C adopt a chair conformation. Rings D and E are envelopes, with C(14) and C(17) displaced from their respective planes by 0.643 (3) and 0.482 (3)A. The ring system A/B shows quasi-trans fusion, whilst ring systems B/C and C/D are trans fused about C(8)-C(9) and C(13)-C(14) respectively. The D/E junction shows cis fusion.
Resumo:
(I)Lantadene-B: C35H52O5,M r =552.80, MonoclinicC2,a=25.65(1),b=6.819(9),c=18.75(1) Å,beta=100.61(9),V=3223(5) Å3,Z=4,D x =1.14 g cm–3 CuKagr (lambda=1.5418A),mgr=5.5 cm–1,F(000)=1208,R=0.118,wR=0.132 for 1527 observed reflections withF o ge2sgr(F o ). (II)Lantadene-C: C35H54O5·CH3OH,Mr=586.85, Monoclinic,P21,a=9.822(3),b=10.909(3),c=16.120(8)Å,beta=99.82(4),V=1702(1)Å3,Z=2,D x =1.145 g cm–3, MoKagr (lambda=0.7107Å), mgr=0.708 cm–1 F(000)=644,R=0.098, wR=0.094 for 1073 observed reflections. The rings A, B, C, D, and E aretrans, trans, trans, cis fused and are in chair, chair, sofa, half-chair, chair conformations, respectively, in both the structures. In the unit cell the molecules are stabilized by O-HctdotO hydrogen bonds in both the structures, however an additional C-HctdotO interaction is observed in the case of Lantadene-C.
Resumo:
Two inorganic-organic hybrid framework iron phosphate-oxalates, I, [N2C4H12](0.5)[Fe-2(HPO4)(C2O4)(1.5)] and II, [Fe-2(OH2)PO4(C2O4)(0.5)] have been synthesized by hydrothermal means and the structures determined by X-ray crystallography. Crystal Data: compound I, monoclinic, spacegroup = P2(1)/c (No. 14), a=7.569(2) Angstrom, b=7.821(2) Angstrom, c=18.033(4) Angstrom, beta=98.8(1)degrees, V=1055.0(4) Angstrom(3), Z=4, M=382.8, D-calc=2.41 g cm(-3) MoK alpha, R-F=0.02; compound II, monoclinic, spacegroup=P2(1)/c (No. 14), a=10.240(1) b=6.375(3) Angstrom, 9.955(1) Angstrom, beta=117.3(1)degrees, V=577.4(1) Angstrom(3), Z=4, M=268.7, D-calc=3.09 g cm(-3) MoK alpha, R-F=0.03. These materials contain a high proportion of three-coordinated oxygens and [Fe2O9] dimeric units, besides other interesting structural features. The connectivity of Fe2O9 is entirely different in the two materials resulting in the formation of a continuous chain of Fe-O-Fe in II. The phosphate-oxalate containing the amine, I, forms well-defined channels. Magnetic susceptibility measurements show Fen to be in the high-spin state (t(2g)(4)e(g)(2)) in II, and in the intermediate-spin state (t(2g)(5)e(g)(1)) in I.
Resumo:
A new form of L-histidine L-aspartate monohydrate crystallizes in space group P22 witha = 5.131(1),b = 6.881(1),c= 18.277(2) Å,β= 97.26(1)° and Z = 2. The structure has been solved by the direct methods and refined to anR value of 0.044 for 1377 observed reflections. Both the amino acid molecules in the complex assume the energetically least favourable allowed conformation with the side chains staggered between the α-amino and α-scarboxylate groups. This results in characteristic distortions in some bond angles. The unlike molecules aggregate into alternating double layers with water molecules sandwiched between the two layers in the aspartate double layer. The molecules in each layer are arranged in a head-to-tail fashion. The aggregation pattern in the complex is fundamentally similar to that in other binary complexes involving commonly occurring L amino acids, although the molecules aggregate into single layers in them. The distribution of crystallographic (and local) symmetry elements in the old form of the complex is very different from that in the new form. So is the conformation of half the histidine molecules. Yet, the basic features of molecular aggregation, particularly the nature and the orientation of head-to-tail sequences, remain the same in both the forms. This supports the thesis that the characteristic aggregation patterns observed in crystal structures represent an intrinsic property of amino acid aggregation.
Resumo:
The tripeptide Boc-Aib-Leu-Pro-NHMe crystallizes in the orthorhombic space group P212121 with a = 9.542, b = 15.200, c = 18.256 Å and Z = 4. Each peptide is associated wth two water molecules in the asymmetric unit of the crystal. The structure has been solved by direct methods and refined to an R-value of 0.069. The peptide adopts a structure without any intramolecular hydrogen bond. The three residues occupy distinctly different regions of the Ramachandran map: Aib in the left-handed 310-helical region (± = 67°, ± = 23°), Leu in the β-sheet region (± = - 133°, ± = 142°) and Pro in the poly (Pro) II region (± = - 69°, ± = 151°). An interesting observation is that each water molecule participates in four hydrogen bonds with distorted tetrahedral coordination about the oxygen atom.
Resumo:
The crystal structures of alkyl 2-deoxy-alpha-D-arabino-hexopyranosides, with the alkyl chain lengths from C-8 to C-18, are established by the single crystal X-ray structural determination. The even-alkyl chain length derivatives crystallized orthorhombic, with space group P2(1)2(1)2(1), whereas the odd-alkyl chain length derivatives crystallized monoclinic, with space group P2(1). The sugar moieties retained a C-4(1) chair conformation and the conformation of the alkyl chains was all-trans. The molecules formed a bilayer structure, in which alkyl chains were interdigitated.The hydrogen bonds, originating from the sugar moieties, were observed in adjacent layers and also within the same layer, resulting in the formation of infinite chains. The alkyl chains arranged parallel to each other and formed planar structures. The thermal properties of the alkyl 2-deoxy glucosides were analyzed further. It was observed that none of the derivatives exhibited mesomorphism. This study establishes that the absence of the hydroxyl group at C-2 of the sugar moiety results in a non-mesogenic nature of the alkyl 2-deoxy-alpha-D-glycosides, as opposed to the profound mesogenic nature of the normal alkyl glycosides.
Resumo:
Two IS- and 16-residue peptides containing a-aminoisobutyric acid (Aib) have been synthesized, as part of a strategy to construct stereochemically rigid peptide helices, in a modular approach to design of protein mimics. The peptides Boc-(Val-Ala-Leu-Aib),-OMe ( I ) and Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-(Val-Ala-Leu-Aib()11z)- OhaMvee been crystallized.Both crystals are stable only in the presence of mother liquor or water. The crystal data are as follows. I: C78H140N16019~2H20,P2,, a = 16.391 (3) A, b = 16.860 (3) A, c = 18.428 (3) A, p = 103.02 (I)O, Z = 2, R = 9.6% for 3445 data with lFol >30(F), resolution 0.93 A. 11: C7,Hl,,N,S018.7.5H,0, C2221, a = 18.348 ( 5 ) A, b = 47.382 (1 1) A, c = 24.157 ( 5 ) A, Z =8, R = l0,6%, for 3147 data with lFol > 3a(F), resolution 1.00 A. The 15-residue peptide (11) is entirely a helical, while the 16-residue peptide ( I ) has a short segment of 310 helix at the N terminus. The packing of the helices in the crystals is rather incfficicnt with no particular attractions between Leu-Leu side chains, or any other pair. Both crystals have fairly large voids, which are filled with water molecules in a disordered fashion. Water molecule sites near the polar head-to-tail regions are well detcrmined, those closer to the hydrophobic side chains less so and a number of possible water sites in the remaining "empty" space are not determined. No interdigitation of Leu side chains is observed in the crystal as is hypothesized in the "leucine zipper" class of DNA binding proteins.
Resumo:
Reactions of cis-[(C6H5N)PC1]z(1 ) with the difunctional reagents HO(CH2)20H,H (CH3)N(CHz)zN(CH3)HH, (CH3)N(CH& OH, and HO(CHz)30Hi n the presence of triethylamine yield the new bicyclic 1,3,2X3,4h3-diazadiphosphetidines[( C6H5- N)PIZ[-O(CHZ)Zo-l (2), [(C6H5N)PlZ[-(CH3)N(CHZ)ZN(CH3)-l (319 [(C6H~N)PlZ~-(CH3)N(cHZ)20 (4), and [(C6H5 N)P],[-Q(CH2),0-] (5), respectively. The products have been characterized by elemental analyses and IR and NMR spectroscopic data. The structures of 4 and 5 have been determined by single-crystal X-ray analysis. Crystal data for 4: monoclinic, P2,/c, a = 9.823 (2) A, b = 8.608 (1) A, c = 18.423 (3) A, i3 = 90.55 (1)O, Z = 4. Crystal data for 5 monoclinic, P2,/c, a = 9.727 (2) A, b = 8.064 (2) A, c = 19.702 (4) A, @ =I 91.31 (l)', 2 = 4. The structures have been solved by direct methods and refined to R = 0.028 for 4 and R = 0.050 for 5. Compound 4 is the first example of an aminoalkoxy-l,3,2X3,4X3-diazadiphosphetidine. The PzNz ring is slightly puckered in both 4 and 5 and the puckering occurs in a manner opposite to that observed for cis-[(RN)PX],structures.
Resumo:
Although the peptide Boc-Aibl-Ala2-Leu3- Aib4-Alas Leu'-Aib7-Ala8-Leu9-Aib'0-OMe [with a t-butoxycarbonyl(Boc) blocking group at the amino terminus, a methyl ester (OMe) at the carboxyl terminus, and four a-aminoisobutyric (Aib) residues] has a 3-fold repeat of residues, the helix formed by the peptide backbone is irregular. The carboxyl-terminal half assumes an at-helical form with torsion angles ) and r of approximately -60° and -45°, respectively, whereas the amino-terminal half is distorted by an insertion of a water molecule between the amide nitrogen of Ala5 [N(5)] and the carbonyl oxygen of Ala2 [0(2)]. The water molecule W(1) acts as a bridge by forming hydrogen bonds N(5).W(1) (2.93 A) and W(1)---0(2) (2.86 A). The distortion of the helix exposes the carbonyl oxygens of Aib' and Aib4 to the outside environment, with the consequence that the helix assumes an amphiphilic character despite having all apolar residues. Neighboring helices in the crystal run in antiparallel directions. On one side of a helix there are only hydrophobic contacts with efficient interdigitation of leucine side chains with those from the neighboring helix. On the other side of the helix there are hydrogen bonds between protruding carbonyl oxygens and four water molecules that separate two neighboring helices. Along the helix axis the helices bind head-to-tail with a direct hydrogen bond N(2)-0(9) (3.00 A). Crystals grown from methanol/water solution are in space group P2, with a = 15.778 ± 0.004 A, b = 11.228 ± 0.002 A, c = 18.415 ± 0.003 A, = 102.10 ± 0.02ur and two formula units per cell for C49HON1003 2H2OCH3OH. The overall agreement factorR is 7.5% for 3394 reflections observed with intensities >3a(F), and the resolution is 0.90 A.
Resumo:
By the reaction of Ru2Cl(O2CAr)4 (1) and PPh3 in MeCN-H2O the diruthenium(II,III) and diruthenium(II) compounds of the type Ru2(OH2)Cl(MeCN)(O2CAr)4(PPh3)2 (2) and Ru2(OH2)(MeCN)2(O2CAr)4(PPh3)2 (3) were prepared and characterized by analytical, spectral, and electrochemical data (Ar is an aryl group, C6H4-p-X; X = H, OMe, Me, Cl, NO2). The molecular structure of Ru2(OH2)Cl(MeCN)(O2CC6H4-p-OMe)4(PPh3)2 was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.538 (5) angstrom, b = 15.650 (4) angstrom, c = 18.287 (7) angstrom, alpha = 101.39 (3)-degrees, beta = 105.99 (4)-degrees, gamma = 97.94 (3)-degrees, V = 3574 angstrom 3, Z = 2. The molecule is asymmetric, and the two ruthenium centers are clearly distinguishable. The Ru(III)-Ru(II), Ru(III)-(mu-OH2), and Ru(II)-(mu-OH2) distances and the Ru-(mu-OH2)-Ru angle in [{Ru(III)Cl(eta-1-O2CC6H4-p-OMe)(PPh3)}(mu-OH2)(mu-O2CC6H4-p-OMe)2{Ru(II)(MeCN)(eta-1-O2CC6H4-p-OMe)(PPh3)}] are 3.604 (1), 2.127 (8), and 2.141 (10) angstrom and 115.2 (5)-degrees, respectively. The compounds are paramagnetic and exhibit axial EPR spectra in the polycrystalline form. An intervalence transfer (IT) transition is observed in the range 900-960 nm in chloroform in these class II type trapped mixed-valence species 2. Compound 2 displays metal-centered one-electron reduction and oxidation processes near -0.4 and +0.6 V (vs SCE), respectively in CH2Cl2-TBAP. Compound 2 is unstable in solution phase and disproportionates to (mu-aquo)diruthenium(II) and (mu-oxo)diruthenium(III) complexes. The mechanistic aspects of the core conversion are discussed. The molecular structure of a diruthenium(II) compound, Ru2(OH2)(MeCN)2(O2CC6H4-p-NO2)4(PPh3)2.1.5CH2Cl2, was obtained by X-ray crystallography. The compound crystallizes in the space group P2(1)/c with a = 23.472 (6) angstrom, b = 14.303 (3) angstrom, c = 23.256 (7) angstrom, beta = 101.69 (2)-degrees, V = 7645 angstrom 3, and Z = 4. The Ru(II)-Ru(II) and two Ru(II)-(mu-OH2) distances and the Ru(II)-(mu-OH2)-Ru(II) angle in [{(PPh3)-(MeCN)(eta-1-O2CC6H4-p-NO2)Ru}2(mu-OH2)(mu-O2CC6H4-p-NO2)2] are 3.712 (1), 2.173 (9), and 2.162 (9) angstrom and 117.8 (4)-degrees, respectively. In both diruthenium(II,III) and diruthenium(II) compounds, each metal center has three facial ligands of varying pi-acidity and the aquo bridges are strongly hydrogen bonded with the eta-1-carboxylato facial ligands. The diruthenium(II) compounds are diamagnetic and exhibit characteristic H-1 NMR spectra in CDCl3. These compounds display two metal-centered one-electron oxidations near +0.3 and +1.0 V (vs SCE) in CH2Cl2-TBAP. The overall reaction between 1 and PPh3 in MeCN-H2O through the intermediacy of 2 is of the disproportionation type. The significant role of facial as well as bridging ligands in stabilizing the core structures is observed from electrochemical studies.
Resumo:
The crystal and molecular structures of the Tris salt of adenosine 5'-diphosphate were determined from X-ray diffraction data. The crystals are monoclinic, space P21, and Z = 2 with a=9.198 (2) A, b=6.894 (1) A, c=18.440 (4) A, and beta = 92.55 (2) degrees. Intensity data were collected on an automated diffractometer. The structure was solved by the heavy-atom technique and refined by least squares to R = 0.047. The ADP molecule adopts a folded conformation. The conformation about the glycosidic bond is anti. The conformation of the ribose ring is close to a perfect C(2')-endo-C-(3')-exo puckering. The conformation about C(4')-C(5') is gauche-gauche, similar to other nucleotide structures. The pyrophosphate chain displays a nearly eclipsed geometry when viewed down the P-P vector, unlike the staggered conformation observed in crystal structures of other pyrophosphates. The less favorable eclipsed conformation probably results from the observed association of Tris molecules with the polar diphosphate chain through electrostatic interactions and hydrogen bonds. Such interactions may play an important role in Tris-buffered aqueous solutions of nucleotides and metal ions.
Resumo:
The crystal structure of a daturalactone derivative has been determined by X-ray structural analysis. The compound crystallizes in orthorhomic space group P2(1)2(1)2(1) with cell parameters a = 15.141(1) angstrom, b = 18.425(1) angstrom, c = 19.251(2) angstrom. The structure was solved by direct methods and refined to R = 0.082. The asymmetric unit contains two non-equivalent molecules. Extensive hydrogen bonding is present. The conformations of the rings are A: a distorted half-chair, B: a perfect half-chair, C: a chair, D: an envelope-half chair and E: a twist boat. Ring junctions A/B, B/C, C/D are all trans fused. Methyl carbons C(18), C(19), C(27) and the lactone moiety is beta-oriented whereas the methyl carbons C(21) and C(28) are alpha-oriented.
Resumo:
The developing seeds of Actinodaphne hookeri were investigated to delineate their ability to synthesize large amounts of trilaurin. Until 88 days after flowering the embryos contained 71% neutral lipids (NL) and 29% phospholipids (PL) and both these components contained C-16:0, C-18:0, C-18:2, and C-18:3 as the major fatty acids (FA). At 102 days after flowering the seeds began to accumulate triacylglycerols (TAG) and to synthesize lauric acid (C-12:0). By 165 days after flowering, when the seeds were mature, they contained about 99% NL and 1% FL. At this stage the TAG contained exclusively C-12:0, while the PL consisted of long-chain fatty acids (LCFA) only. Leaf lipids in contrast did not contain any C-12:0. Experiments on [1-C-14]acetate incorporation into developing seed slices showed that at 88 days after flowering only 4% of the label was in TAG, 1% in diacylglycerols (DAG), and 87% in FL. One hundred two days after flowering seeds incorporated only 2% of the label into TAG, 30% into DAG, and 64% into FL. In contrast at 114 days after flowering 71% of the label was incorporated into TAG, 25% into DAG, and only 2% into FL. Analysis of labeled FA revealed that up to 102 days after flowering it was incorporated only into LCFA, whereas at 114 days after flowering it was incorporated exclusively into C-12:0. Furthermore, 67% of the label in PL at 114 days after flowering was found to be dilaurylglycerophosphate. Analysis of the label in DAG at this stage showed that it was essentially in dilaurin species. These observations indicate the induction of enzymes of Kennedy pathway for the specific synthesis of trilaurin at about 114 days after flowering, Homogenates of seeds (114 days after flowering) incubated with labeled FA in the presence of glycerol-3-phosphate and coenzymes A and ATP incorporated 84% of C-12:0 and 61% of C-14:0, but not C-16:0, C-18:2, and C-18:3, into TAG. In contrast the LCFA were incorporated preferentially into FL. It is concluded that, between 102 and 114 days after flowering, a switch occurs in A. hookeri for the synthesis of C-12:0 and trilaurin which is tissue specific. Since the seed synthesizes exclusively C-12:0 at 114 days after flowering onwards and incorporates specifically into TAG, this system appears to be ideal for identifying the enzymes responsible for medium-chain fatty acid as well as trilaurin synthesis and for exploiting them for genetic engineering. (C) 1994 Academic Press, Inc.
Resumo:
A new iron fluorophosphate of the composition, [C6N4H21] [Fe2F2(HPO4)(3)][H2PO4](.)2H(2)O, I has been prepared by the hydrothermal route. This compound contains iron fluorophosphate layers and the H2PO4- anions are present in the interlayer space along with the protonated amine and water molecules. The compound crystallizes in the monoclinic space group P2(1)/c. (a = 13-4422(10) Angstrom, b = 9 7320(10) Angstrom, c = 18-3123(3) Angstrom, beta = 92-1480degrees, V = 2393-92(5) Angstrom 3, Z = 4, M = 719-92, d(calc). = 1.997 g cm(-3), R-1 = 0.03 and wR(2) = 0,09).
Resumo:
Simple and rapid HPLC, GC, and TLC procedures have been developed for detection and determination of nimesulide, a non-pharmacopeial drug, in preformulation and dosage form. Use of these techniques has enabled separation of impurities and the precursor in the bulk material and in formulations. Isocratic reversed-phase HPLC was performed on a C-18 column with methanol-water-acetic acid, 67:32:1 (v/v), as mobile phase and UV detection at 230 nm. Calibration curves were linear over the concentration range 100-1000 mug mL(-1) with a good correlation coefficient (0.9993) and a coefficient of variation of 1.5%. Gas chromatography was performed on an OV-17 packed column with temperature programming and flame-ionization detection. The lower limit of determination by HPLC and GC was 4 ppm. Thin-layer chromatography of nimesulide was performed on silica gel G with toluene-ethyl acetate, 8:2, as mobile phase. Stability testing of the drug was performed under different temperature, humidity, and UV-radiation conditions.