16 resultados para Architectural experience
em Indian Institute of Science - Bangalore - Índia
Resumo:
Abstract is not available.
Resumo:
Literature reveals that a low order priority has been given to foundry applications of the solar furnace for temperatures upto about 1000°C. In the present work, the performance of a solar furnace capable of melting small quantities of foundry-grade metals and alloys had been studied under various conditions. Crucibles of different materials and shapes were tried and the effect of having different heat-shield materials was also studied. Al---bronze crucible with cavity, and well-polished stainless stell heat-shield were found to be most effective in enhancing the efficiency of the furnace. Many important industrial applications of the present solar furnace, such as the recovery of metallic zinc from slags, had also been realised.
Resumo:
Eclogites and their retrogressed equivalents from the eastern unit of the Glenelg-Attadale Inlier in NW Scotland preserve much microstructural evidence that indicates that very high-pressure/temperature eclogite facies conditions were reached, and followed by decompression and hydration during exhumation. Rutile exsolution in garnet and quartz exsolution in omphacite and titanite formed through mineral reactions during high P-T peak metamorphism. Isochemical phase diagrams modeled for samples from three different locations indicate that the outer part of the eastern unit preserves a peak metamorphic condition of c. 850-1000 degrees C at 18-25 kbar, whereas the central part has a similar pressure (c. 23 kbar), but a lower temperature (c. 670 degrees C). Due to the limitations in the phase diagram calculations the estimated P-T conditions represent the minimum conditions attained by the peak metamorphic assemblage, and the pre-exsoived peak assemblage probably stabilized at a higher pressure. This observation is strongly supported by the presence of exsolution microstructures. The present results demonstrate that the eastern unit experienced very high P-T conditions during peak metamorphism and a tight clockwise P-T trajectory and provide the first indication of possible ultrahigh-pressure metamorphism in the Glenelg eclogites. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Various elements of an efficient and reliable 5k W wood gasifier system developed over the last ten years are described. The good performance obtained from the system is related to the careful design of its components and sub-systems. Results from extensive testing of gasifier prototypes at two national centres are discussed along with the experience gained in the field from their use at more than one hundred and fifty locations spread over five states in the country. Issues related to acceptance of the technology are also included. Improvements in design to extend the life, to reduce the cost, and to reduce the number of components are also discussed. A few variants of the design to meet the specific requirements of water pumping, power generation and to exploit specific site characteristics are presented.
Resumo:
We describe a System-C based framework we are developing, to explore the impact of various architectural and microarchitectural level parameters of the on-chip interconnection network elements on its power and performance. The framework enables one to choose from a variety of architectural options like topology, routing policy, etc., as well as allows experimentation with various microarchitectural options for the individual links like length, wire width, pitch, pipelining, supply voltage and frequency. The framework also supports a flexible traffic generation and communication model. We provide preliminary results of using this framework to study the power, latency and throughput of a 4x4 multi-core processing array using mesh, torus and folded torus, for two different communication patterns of dense and sparse linear algebra. The traffic consists of both Request-Response messages (mimicing cache accesses)and One-Way messages. We find that the average latency can be reduced by increasing the pipeline depth, as it enables higher link frequencies. We also find that there exists an optimum degree of pipelining which minimizes energy-delay product.
Resumo:
In this paper, we study how TCP and UDP flows interact with each other when the end system is a CPU resource constrained thin client. The problem addressed is twofold, 1) the throughput of TCP flows degrades severely in the presence of heavily loaded UDP flows 2) fairness and minimum QoS requirements of UDP are not maintained. First, we identify the factors affecting the TCP throughput by providing an in-depth analysis of end to end delay and packet loss variations. The results obtained from the first part leads us to our second contribution. We propose and study the use of an algorithm that ensures fairness across flows. The algorithm improves the performance of TCP flows in the presence of multiple UDP flows admitted under an admission algorithm and maintains the minimum QoS requirements of the UDP flows. The advantage of the algorithm is that it requires no changes to TCP/IP stack and control is achieved through receiver window control.
Resumo:
The paper reports the operational experience from a 100 kWe gasification power plant connected to the grid in Karnataka. Biomass Energy for Rural India (BERI) is a program that implemented gasification based power generation with an installed capacity of 0.88 MWe distributed over three locations to meet the electrical energy needs in the district of Tumkur. The operation of one 100 kWe power plant was found unsatisfactory and not meeting the designed performance. The Indian Institute of Science, Bangalore, the technology developer, took the initiative to ensure the system operation, capacity building and prove the designed performance. The power plant connected to the grid consists of the IISc gasification system which includes reactor, cooling, cleaning system, fuel drier and water treatment system to meet the producer gas quality for an engine. The producer gas is used as a fuel in Cummins India Limited, GTA 855 G model, turbo charged engine and the power output is connected to the grid. The system has operated for over 1000 continuous hours, with only about 70 h of grid outages. The total biomass consumption for 1035 h of operation was 111 t at an average of 107 kg/h. Total energy generated was 80.6 MWh reducing over loot of CO(2) emissions. The overall specific fuel consumption was about 1.36 kg/kWh, amounting to an overall efficiency from biomass to electricity of about 18%. The present operations indicate that a maintenance schedule for the plant can be at the end of 1000 h. The results for another 1000 h of operation by the local team are also presented. (C) 2011 International Energy Initiative. Published by Elsevier Inc. All rights reserved.
Resumo:
In this paper we report on the outcomes of a research and demonstration project on human intrusion detection in a large secure space using an ad hoc wireless sensor network. This project has been a unique experience in collaborative research, involving ten investigators (with expertise in areas such as sensors, circuits, computer systems,communication and networking, signal processing and security) to execute a large funded project that spanned three to four years. In this paper we report on the specific engineering solution that was developed: the various architectural choices and the associated specific designs. In addition to developing a demonstrable system, the various problems that arose have given rise to a large amount of basic research in areas such as geographical packet routing, distributed statistical detection, sensors and associated circuits, a low power adaptive micro-radio, and power optimising embedded systems software. We provide an overview of the research results obtained.
Resumo:
The paper presents a new controller inspired by the human experience based, voluntary body action control (dubbed motor control) learning mechanism. The controller is called Experience Mapping based Prediction Controller (EMPC). EMPC is designed with auto-learning features without the need for the plant model. The core of the controller is formed around the motor action prediction-control mechanism of humans based on past experiential learning with the ability to adapt to environmental changes intelligently. EMPC is utilized for high precision position control of DC motors. The simulation results are presented to show that accurate position control is achieved using EMPC for step and dynamic demands. The performance of EMPC is compared with conventional PD controller and MRAC based position controller under different system conditions. Position Control using EMPC is practically implemented and the results are presented.
Resumo:
Transcriptional regulation enables adaptation in bacteria. Typically, only a few transcriptional events are well understood, leaving many others unidentified. The recent genome-wide identification of transcription factor binding sites in Mycobacterium tuberculosis has changed this by deciphering a molecular road-map of transcriptional control, indicating active events and their immediate downstream effects.
Resumo:
Use of fuel other than woody generally has been limited to rice husk and other residues are rarely tried as a fuel in a gasification system. With the availability of woody biomass in most countries like India, alternates fuels are being explored for sustainable supply of fuel. Use of agro residues has been explored after briquetting. There are few feedstock's like coconut fronts, maize cobs, etc, that might require lesser preprocessing steps compared to briquetting. The paper presents a detailed investigation into using coconut fronds as a fuel in an open top down draft gasification system. The fuel has ash content of 7% and was dried to moisture levels of 12 %. The average bulk density was found to be 230 kg/m3 with a fuel size particle of an average size 40 mm as compared to 350 kg/m3 for a standard wood pieces. A typical dry coconut fronds weighs about 2.5kgs and on an average 6 m long and 90 % of the frond is the petiole which is generally used as a fuel. The focus was also to compare the overall process with respect to operating with a typical woody biomass like subabul whose ash content is 1 %. The open top gasification system consists of a reactor, cooling and cleaning system along with water treatment. The performance parameters studied were the gas composition, tar and particulates in the clean gas, water quality and reactor pressure drop apart from other standard data collection of fuel flow rate, etc. The average gas composition was found to be CO 15 1.0 % H-2 16 +/- 1% CH4 0.5 +/- 0.1 % CO2 12.0 +/- 1.0 % and rest N2 compared to CO 19 +/- 1.0 % H-2 17 +/- 1.0 %, CH4 1 +/- 0.2 %, CO2 12 +/- 1.0 % and rest N2. The tar and particulate content in the clean gas has been found to be about 10 and 12 mg/m3 in both cases. The presence of high ash content material increased the pressure drop with coconut frond compared to woody biomass.