27 resultados para Application performance monitoring.
em Indian Institute of Science - Bangalore - Índia
Resumo:
6PANview[1] is a Wireless Sensor Network(WSN) monitoring system for 6LoWPAN/RPL networks which we developed as an overlay network for a WSN application. A monitoring system, while performing its operations for maintaining the health of the monitored network, must also be conscious of its impact on the application performance, and must strive to minimize this impact. To this end, we propose a centralized scheduling algorithm within 6PANview which non-intrusively analyzes application traffic arrival patterns at the base station, identifies network idle periods and schedules monitoring activities. The proposed algorithm finds those periodic sequences which are likely to have given rise to the pattern of arrivals seen at the base station. Parts of those sequences are then extended to coarsely predict future traffic and find epochs where low traffic is predicted, in order to schedule monitoring traffic or other activities at these times. We present simulation results for the proposed prediction and scheduling algorithm and its implementation as part of 6PANview. As an enhancement, we briefly talk about using 6PANview's overlay network architecture for distributed scheduling.
Resumo:
Fallibility is inherent in human cognition and so a system that will monitor performance is indispensable. While behavioral evidence for such a system derives from the finding that subjects slow down after trials that are likely to produce errors, the neural and behavioral characterization that enables such control is incomplete. Here, we report a specific role for dopamine/basal ganglia in response conflict by accessing deficits in performance monitoring in patients with Parkinson's disease. To characterize such a deficit, we used a modification of the oculomotor countermanding task to show that slowing down of responses that generate robust response conflict, and not post-error per se, is deficient in Parkinson's disease patients. Poor performance adjustment could be either due to impaired ability to slow RT subsequent to conflicts or due to impaired response conflict recognition. If the latter hypothesis was true, then PD subjects should show evidence of impaired error detection/correction, which was found to be the case. These results make a strong case for impaired performance monitoring in Parkinson's patients.
Resumo:
Realization of cloud computing has been possible due to availability of virtualization technologies on commodity platforms. Measuring resource usage on the virtualized servers is difficult because of the fact that the performance counters used for resource accounting are not virtualized. Hence, many of the prevalent virtualization technologies like Xen, VMware, KVM etc., use host specific CPU usage monitoring, which is coarse grained. In this paper, we present a performance monitoring tool for KVM based virtualized machines, which measures the CPU overhead incurred by the hypervisor on behalf of the virtual machine along-with the CPU usage of virtual machine itself. This fine-grained resource usage information, provided by the above tool, can be used for diverse situations like resource provisioning to support performance associated QoS requirements, identification of bottlenecks during VM placements, resource profiling of applications in cloud environments, etc. We demonstrate a use case of this tool by measuring the performance of web-servers hosted on a KVM based virtualized server.
Resumo:
Lateral displacement and global stability are the two main stability criteria for soil nail walls. Conventional design methods do not adequately address the deformation behaviour of soil nail walls, owing to the complexity involved in handling a large number of influencing factors. Consequently, limited methods of deformation estimates based on empirical relationships and in situ performance monitoring are available in the literature. It is therefore desirable that numerical techniques and statistical methods are used in order to gain a better insight into the deformation behaviour of soil nail walls. In the present study numerical experiments are conducted using a 2 4 factorial design method. Based on analysis of the maximum lateral deformation and factor-of-safety observations from the numerical experiments, regression models for maximum lateral deformation and factor-of-safety prediction are developed and checked for adequacy. Selection of suitable design factors for the 2 4 factorial design of numerical experiments enabled the use of the proposed regression models over a practical range of soil nail wall heights and in situ soil variability. It is evident from the model adequacy analyses and illustrative example that the proposed regression models provided a reasonably good estimate of the lateral deformation and global factor of safety of the soil nail walls.
Resumo:
We study wireless multihop energy harvesting sensor networks employed for random field estimation. The sensors sense the random field and generate data that is to be sent to a fusion node for estimation. Each sensor has an energy harvesting source and can operate in two modes: Wake and Sleep. We consider the problem of obtaining jointly optimal power control, routing and scheduling policies that ensure a fair utilization of network resources. This problem has a high computational complexity. Therefore, we develop a computationally efficient suboptimal approach to obtain good solutions to this problem. We study the optimal solution and performance of the suboptimal approach through some numerical examples.
Resumo:
A new feature-based technique is introduced to solve the nonlinear forward problem (FP) of the electrical capacitance tomography with the target application of monitoring the metal fill profile in the lost foam casting process. The new technique is based on combining a linear solution to the FP and a correction factor (CF). The CF is estimated using an artificial neural network (ANN) trained using key features extracted from the metal distribution. The CF adjusts the linear solution of the FP to account for the nonlinear effects caused by the shielding effects of the metal. This approach shows promising results and avoids the curse of dimensionality through the use of features and not the actual metal distribution to train the ANN. The ANN is trained using nine features extracted from the metal distributions as input. The expected sensors readings are generated using ANSYS software. The performance of the ANN for the training and testing data was satisfactory, with an average root-mean-square error equal to 2.2%.
Resumo:
Software transactional memory (STM) has been proposed as a promising programming paradigm for shared memory multi-threaded programs as an alternative to conventional lock based synchronization primitives. Typical STM implementations employ a conflict detection scheme, which works with uniform access granularity, tracking shared data accesses either at word/cache line or at object level. It is well known that a single fixed access tracking granularity cannot meet the conflicting goals of reducing false conflicts without impacting concurrency adversely. A fine grained granularity while improving concurrency can have an adverse impact on performance due to lock aliasing, lock validation overheads, and additional cache pressure. On the other hand, a coarse grained granularity can impact performance due to reduced concurrency. Thus, in general, a fixed or uniform granularity access tracking (UGAT) scheme is application-unaware and rarely matches the access patterns of individual application or parts of an application, leading to sub-optimal performance for different parts of the application(s). In order to mitigate the disadvantages associated with UGAT scheme, we propose a Variable Granularity Access Tracking (VGAT) scheme in this paper. We propose a compiler based approach wherein the compiler uses inter-procedural whole program static analysis to select the access tracking granularity for different shared data structures of the application based on the application's data access pattern. We describe our prototype VGAT scheme, using TL2 as our STM implementation. Our experimental results reveal that VGAT-STM scheme can improve the application performance of STAMP benchmarks from 1.87% to up to 21.2%.
Resumo:
Exascale systems of the future are predicted to have mean time between failures (MTBF) of less than one hour. Malleable applications, where the number of processors on which the applications execute can be changed during executions, can make use of their malleability to better tolerate high failure rates. We present AdFT, an adaptive fault tolerance framework for long running malleable applications to maximize application performance in the presence of failures. AdFT framework includes cost models for evaluating the benefits of various fault tolerance actions including checkpointing, live-migration and rescheduling, and runtime decisions for dynamically selecting the fault tolerance actions at different points of application execution to maximize performance. Simulations with real and synthetic failure traces show that our approach outperforms existing fault tolerance mechanisms for malleable applications yielding up to 23% improvement in application performance, and is effective even for petascale systems and beyond.
Resumo:
As the gap between processor and memory continues to grow Memory performance becomes a key performance bottleneck for many applications. Compilers therefore increasingly seek to modify an application’s data layout to improve cache locality and cache reuse. Whole program Structure Layout [WPSL] transformations can significantly increase the spatial locality of data and reduce the runtime of programs that use link-based data structures, by increasing the cache line utilization. However, in production compilers WPSL transformations do not realize the entire performance potential possible due to a number of factors. Structure layout decisions made on the basis of whole program aggregated affinity/hotness of structure fields, can be sub optimal for local code regions. WPSL is also restricted in applicability in production compilers for type unsafe languages like C/C++ due to the extensive legality checks and field sensitive pointer analysis required over the entire application. In order to overcome the issues associated with WPSL, we propose Region Based Structure Layout (RBSL) optimization framework, using selective data copying. We describe our RBSL framework, implemented in the production compiler for C/C++ on HP-UX IA-64. We show that acting in complement to the existing and mature WPSL transformation framework in our compiler, RBSL improves application performance in pointer intensive SPEC benchmarks ranging from 3% to 28% over WPSL
Resumo:
This paper presents a new approach for assessing power system voltage stability based on artificial feed forward neural network (FFNN). The approach uses real and reactive power, as well as voltage vectors for generators and load buses to train the neural net (NN). The input properties of the NN are generated from offline training data with various simulated loading conditions using a conventional voltage stability algorithm based on the L-index. The performance of the trained NN is investigated on two systems under various voltage stability assessment conditions. Main advantage is that the proposed approach is fast, robust, accurate and can be used online for predicting the L-indices of all the power system buses simultaneously. The method can also be effectively used to determining local and global stability margin for further improvement measures.
Resumo:
In this paper, pattern classification problem in tool wear monitoring is solved using nature inspired techniques such as Genetic Programming(GP) and Ant-Miner (AM). The main advantage of GP and AM is their ability to learn the underlying data relationships and express them in the form of mathematical equation or simple rules. The extraction of knowledge from the training data set using GP and AM are in the form of Genetic Programming Classifier Expression (GPCE) and rules respectively. The GPCE and AM extracted rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in GP evolved GPCE and AM based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The performance of the data classification using GP and AM is as good as the classification accuracy obtained in the earlier study.
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.
Resumo:
The integral diaphragm pressure transducers machined out of precipitation hardened martensite stainless steel (APX4) are widely used for propellant pressure measurements in space applications. These transducers are expected to exhibit dimensional stability and linearity for their entire useful life. These vital factors are very critical for the reliable performance and dependability of the pressure transducers. However, these transducers invariably develop internal stresses during various stages of machining. These stresses have an adverse effect on the performance of the transducers causing deviation from linearity. In order to eliminate these possibilities, it was planned to cryotreat the machined transducers to improve both the long-term linearity and dimensional stability. To study these effects, an experimental cryotreatment unit was designed and developed based on the concept of indirect cooling using the concept of cold nitrogen gas forced closed loop convection currents. The system has the capability of cryotreating large number of samples for varied rates of cooling, soaking and warm-up. After obtaining the initial levels of residual stress and retained austenite using X-ray diffraction techniques, the pressure transducers were cryotreated at 98 K for 36 h. Immediately after cryotreatment, the transducers were tempered at 510 degrees C for 3 h in vacuum furnace. Results after cryo treatment clearly indicated significant reduction in residual stress levels and conversion of retained austenite to martensite. These changes have brought in improvements in long term zero drift and dimensional stability. The cryotreated pressure transducers have been incorporated for actual space applications. (c) 2010 Published by Elsevier Ltd.