77 resultados para Application of graphical meshes

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetic schemes as pursued in CFD Centre are obtained by taking suitable moments of upwind schemes for Boltzmann equation without collision term. The primary ones among these are KFVS, LSKUM, KFMG and these have been applied successfully to a variety of flow problems using various meshes. These schemes have been found to be very robust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solubilization of bilirubin IX-Alpha in aqueous solution by sodium cholate micelles has been examined by 270 MHz 1H-NMR spectroscopy. Incorporation of bilirubin into the micelles is accompanied by specific shifts of bilirubin vinyl and bridgehead protons and the C18 and C19 methyl groups of the steroid. The observed chemical shifts show a monotonic concentration dependence suggesting that changes in aggregation size are continuous. Nuclear Overhauser effects (NOE) have been shown to be a useful probe or micellization. A 4:1 cholate/bilirubin mixture has been investigated by difference NOE spectroscopy. The observation of intermolecular nuclear Overhauser effects between peripheral protons of bilirubin and cholate are diagnostic of spatially proximate groups. Inter-cholate nuclear Overhauser effects increase in magnitude upon bilirubin incorporation suggesting closer packing of steroid molecules on solubilization of the pigment. Intramolecular nuclear Overhauser effects observed for solubilized bilirubin are consistent with a compact intramolecularly hydrogen-bonded conformation resembling that determined for bilirubin in the solid state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the applicability of the least mean fourth (LM F) power gradient adaptation criteria with 'advantage' for signals associated with gaussian noise, the associated noise power estimate not being known. The proposed method, as an adaptive spectral estimator, is found to provide superior performance than the least mean square (LMS) adaptation for the same (or even lower) speed of convergence for signals having sufficiently high signal-to-gaussian noise ratio. The results include comparison of the performance of the LMS-tapped delay line, LMF-tapped delay line, LMS-lattice and LMF-lattice algorithms, with the Burg's block data method as reference. The signals, like sinusoids with noise and stochastic signals like EEG, are considered in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the simple theory of flexure of beams, the slope, bending moment, shearing force, load and other quantities are functions of a derivative of y with respect to x. It is shown that the elastic curve of a transversely loaded beam can be represented by the Maclaurin series. Substitution of the values of the derivatives gives a direct solution of beam problems. In this paper the method is applied to derive the Theorem or three moments and slope deflection equations. The method is extended to the solution of a rigid portal frame. Finally the method is applied to deduce results on which the moment distribution method of analyzing rigid frames is based.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Values of Ko, Flory constant related to unperturbed dimensions, are evaluated for methyl methacrylate-acrylonitrile random copolymers using Flory-Fox, Kurata-Stockmayer and Inagaki-Ptitsyn methods and compared with the Ko values obtained by Stockmayer-Fixman method. Ko values are seen to be less in solvents which have large a (Mark-Houwink exponent) values. A correlation between Ko and a is developed to arrive at a more reliable estimate of Ko for this copolymer system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of algorithms, based on Haar functions, for extracting the desired frequency components from transient power-system relaying signals is presented. The applications of these algorithms to impedance detection in transmission line protection and to harmonic restraint in transformer differential protection are discussed. For transmission line protection, three modes of application of the Haar algorithms are described: a full-cycle window algorithm, an approximate full-cycle window algorithm, and a half-cycle window algorithm. For power transformer differential protection, the combined second and fifth harmonic magnitude of the differential current is compared with that of fundamental to arrive at a trip decision. The proposed line protection algorithms are evaluated, under different fault conditions, using realistic relaying signals obtained from transient analysis conducted on a model 400 kV, 3-phase system. The transformer differential protection algorithms are also evaluated using a variety of simulated inrush and internal fault signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of initial functions has been applied for deriving higher order theories for cross-ply laminated composite thick rectangular plates. The equations of three-dimensional elasticity have been used. No a priori assumptions regarding the distribution of stresses or displacements are needed. Numerical solutions of the governing equations have been presented for simply supported edges and the results are compared with available ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plywood manufacture includes two fundamental stages. The first is to peel or separate logs into veneer sheets of different thicknesses. The second is to assemble veneer sheets into finished plywood products. At the first stage a decision must be made as to the number of different veneer thicknesses to be peeled and what these thicknesses should be. At the second stage, choices must be made as to how these veneers will be assembled into final products to meet certain constraints while minimizing wood loss. These decisions present a fundamental management dilemma. Costs of peeling, drying, storage, handling, etc. can be reduced by decreasing the number of veneer thicknesses peeled. However, a reduced set of thickness options may make it infeasible to produce the variety of products demanded by the market or increase wood loss by requiring less efficient selection of thicknesses for assembly. In this paper the joint problem of veneer choice and plywood construction is formulated as a nonlinear integer programming problem. A relatively simple optimal solution procedure is developed that exploits special problem structure. This procedure is examined on data from a British Columbia plywood mill. Restricted to the existing set of veneer thicknesses and plywood designs used by that mill, the procedure generated a solution that reduced wood loss by 79 percent, thereby increasing net revenue by 6.86 percent. Additional experiments were performed that examined the consequences of changing the number of veneer thicknesses used. Extensions are discussed that permit the consideration of more than one wood species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The motion due to an oscillatory point source in a rotating stratified fluid has been studied by Sarma & Naidu (1972) by using threefold Fourier transforms. The solution obtained by them in the hyperbolic case is wrong since they did not make use of any radiation condition, which is always necessary to get the correct solution. Whenever the motion is created by a source, the condition of radiation is that the sources must remain sources, not sinks of energy and no energy may be radiated from infinity into the prescribed singularities of the field. The purpose of the present note is to explain how Lighthill's (1960) radiation condition can be applied in the hyperbolic case to pick the correct solution. Further, the solution thus obtained is reiterated by an alternative procedure using Sommerfeld's (1964) radiation condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear singular integral equation of transonic flow is examined in the free-stream Mach number range where only solutions with shocks are known to exist. It is shown that, by the addition of an artificial viscosity term to the integral equation, even the direct iterative scheme, with the linear solution as the initial iterate, leads to convergence. Detailed tables indicating how the solution varies with changes in the parameters of the artificial viscosity term are also given. In the best cases (when the artificial viscosity is smallest), the solutions compare well with known results, their characteristic feature being the representation of the shock by steep gradients rather than by abrupt discontinuities. However, 'sharp-shock solutions' have also been obtained by the implementation of a quadratic iterative scheme with the 'artificial viscosity solution' as the initial iterate; the converged solution with a sharp shock is obtained with only a few more iterates. Finally, a review is given of various shock-capturing and shock-fitting schemes for the transonic flow equations in general, and for the transonic integral equation in particular, frequent comparisons being made with the approach of this paper.