60 resultados para Apparent and partial molar volume
em Indian Institute of Science - Bangalore - Índia
Resumo:
Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, alpha-PbO2-type, and pyrite-type for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume-for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase. (C) 2014 AIP Publishing LLC.
Resumo:
Microsomal b-type hemoprotein designated, cytochrome b555 of C-Roseus seedlings was solubilized using detergents and purified by a combination of ion exchange chromatography and gel filtration to a specific content of 18.5 nmol per mg of protein. The purified cytochrome b555 was homogeneous and estimated to have an apparent molecular weight of 16500 on SDS-PAGE. The absorption spectrum of the reduced form has major peaks at 424, 525 and 555 nm. The α-band of the reduced form is asymmetric with a pronounced shoulder at 559 nm. The spectrum of the pyridine ferrohemochrome shows absorption peaks at 557, 524 and 418 nm indicating that the cytochrome has protoheme prosthetic group. The purified cytochrome is autoxidizable and does not combine with carbon monoxide, azide or cyanide. It is reducible by NADH in the presence of NADH-cytochrome b555 reductase partially purified from C-Roseus microsomes.
Resumo:
A simple three step procedure was used to purify microsomal NADH-cytochrome b5 (ferricyanide) reductase to homogeneity from the higher plant C. roseus. The microsomal bound reductase was solubilized using zwitterionic detergent-CHAPS. The solubilized reductase was subjected to affinity chromatography on octylamino Sepharose 4B, blue 2-Sepharose CL-6B and NAD+-Agarose. The homogeneous enzyme has an apparent molecular weight of 33,000 as estimated by SDS-PAGE. The purified enzyme catalyzes the reduction of purified cytochrome b5 from C. roseus in the presence of NADH. The reductase also readily transfers electrons from NADH to ferricyanide (Km 56 μM), 2,6-dichlorophenolindophenol (Km 65 μM) and cytochrome Image via cytochrome b5 but not to menadione.
Resumo:
This study presents the results of an experimental and analytical comparison of the flexural behavior of a high-strength concrete specimen (no conventional reinforcement) with an average plain concrete cube strength of nearly 65 MPa and containing trough shape steel fibers. Trough shape steel fibers with a volume fraction ranging from 0 to 1.5% and having a constant aspect ratio of 80 have been used in this study. Increased toughness and a more ductile stress-strain response were observed with an increase in fiber content, when the fibers were distributed over the full/partial depth of the beam cross section. Based on the tests, a robust analytical procedure has been proposed to establish the required partial depth to contain fiber-reinforced concrete (FRC) so as to obtain the flexural capacity of a member with FRC over the full depth. It is expected that this procedure will help designers in properly estimating the required partial depth of fibers in composite sections for specific structural applications. Empirical and mechanistic relations have also been proposed in this study to establish the load-deflection behavior of high-strength FRC.
Resumo:
Water-ethanol mixtures exhibit many interesting anomalies, such as negative excess partial molar volume of ethanol, excess sound absorption coefficient at low concentrations, and positive deviation from Raoult's law for vapor pressure, to mention a few. These anomalies have been attributed to different, often contradictory origins, but a quantitative understanding is still lacking. We show by computer simulation and theoretical analyses that these anomalies arise from the sudden emergence of a bicontinuous phase that occurs at a relatively low ethanol concentration of x(eth) approximate to 0.06-0.10 (that amounts to a volume fraction of 0.17-0.26, which is a significant range!). The bicontinuous phase is formed by aggregation of ethanol molecules, resulting in a weak phase transition whose nature is elucidated. We find that the microheterogeneous structure of the mixture gives rise to a pronounced nonmonotonic composition dependence of local compressibility and nonmonotonic dependence in the peak value of the radial distribution function of ethyl groups. A multidimensional free energy surface of pair association is shown to provide a molecular explanation of the known negative excess partial volume of ethanol in terms of parallel orientation and hence better packing of the ethyl groups in the mixture due to hydrophobic interactions. The energy distribution of the ethanol molecules indicates additional energy decay channels that explain the excess sound attenuation coefficient in aqueous alcohol mixtures. We studied the dependence of the solvation of a linear polymer chain on the composition of the water-ethanol solvent. We find that there is a sudden collapse of the polymer at x(eth) approximate to 0.05-a phenomenon which we attribute to the formation of the microheterogeneous structures in the binary mixture at low ethanol concentrations. Together with recent single molecule pulling experiments, these results provide new insight into the behavior of polymer chain and foreign solutes, such as enzymes, in aqueous binary mixtures.
Resumo:
The static and dynamic pressure concentration isotherms (PCIs) of MmNi(5-x)Al(x). (x = 0, 0.3, 0.5 and 0.8) hydrides were measured at different temperatures using volumetric method. The effect of Al substitution on PCI and thermodynamic properties were studied. The plateau pressure and maximum hydrogen storage capacity decreased with Al content whereas reaction enthalpy increased. The plateau pressure, plateau slope and hysteresis effect was observed more for dynamic PCIs compared to static PCIs. Different mathematical models used for metal hydride-based thermodynamic devices simulation are compared to select suitable model for static and dynamic PCI simulation of MmNi(5)-based hydrides. Few important physical coefficients (partial molar volume, reaction enthalpy, reaction entropy, etc.) useful for development of thermodynamic devices were estimated. A relation has been proposed to correlate aluminium content and physical coefficients for the prediction of unknown PCI. The simulated and experimental PCIs were found matching closely for both static and dynamic conditions. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
The role of the molar volume on the estimated diffusion parameters has been speculated for decades. The Matano-Boltzmann method was the first to be developed for the estimation of the variation of the interdiffusion coefficients with composition. However, this could be used only when the molar volume varies ideally or remains constant. Although there are no such systems, this method is still being used to consider the ideal variation. More efficient methods were developed by Sauer-Freise, Den Broeder, and Wagner to tackle this problem. However, there is a lack of research indicating the most efficient method. We have shown that Wagner's method is the most suitable one when the molar volume deviates from the ideal value. Similarly, there are two methods for the estimation of the ratio of intrinsic diffusion coefficients at the Kirkendall marker plane proposed by Heumann and van Loo. The Heumann method, like the Matano-Boltzmann method, is suitable to use only when the molar volume varies more or less ideally or remains constant. In most of the real systems, where molar volume deviates from the ideality, it is safe to use the van Loo method. We have shown that the Heumann method introduces large errors even for a very small deviation of the molar volume from the ideal value. On the other hand, the van Loo method is relatively less sensitive to it. Overall, the estimation of the intrinsic diffusion coefficient is more sensitive than the interdiffusion coefficient.
Resumo:
The antitumour protein from the α-endotoxin of Bacillus thuringiensis var. thuringiensis has been purified, crystallized and partially characterized. The same protein also shows the insecticidal activity. According to amino acid analysis it is an acidic protein with a molecular weight of approx. 13 000.
Resumo:
The antitumour protein from the α-endotoxin of Bacillus thuringiensis var. thuringiensis has been purified, crystallized and partially characterized. The same protein also shows the insecticidal activity. According to amino acid analysis it is an acidic protein with a molecular weight of approx. 13 000.
Resumo:
1. 1. Sheep plasma α1-mucoprotein was isolated in an electrophoretically homogeneous state by a combination of ammonium sulphate saturation, isoelectric precipitation and preparative agar electrophoresis in a yield of approx. 150 mg/l of plasma. 2. 2. The mucoprotein was water-soluble, non-coagulable on heating at 100°, not precipitable by 1.8 M perchloric acid, 10% trichloroacetic acid but precipitable by saturated ammonium sulphate solution, 0.6 M sulfosalicylic acid and 5% phosphotungstic acid in 2 N HCl. It had E1 cm1 % value of 9.57 at 278 mμ in water, refractive-index index increment 1.9·10-4 (g/l) in water, isoelectric point at pH 4.45 (sodium acetate-acetic acid buffer) and was homogeneous in pH range 4.0-11.5 but at pH values 2.6 and 3.5 showed some dissociation. 3. 3. The mucoprotein had the following chemical composition: Nitrogen, 12.4%; polypeptide, 77.4%; total hexose (only mannose and galactose), 7.1%; fucose, 1.0%; glucosamine, 4.9% and sialic acid, 4.8%. It had no N-terminal amino acid.
Resumo:
Sesbania mosaic virus (SMV) is a plant virus infecting Sesbania grandiflora plants in Andhra Pradesh, India. Amino acid sequence of the tryptic peptides of SMV coat protein were determined using a gas phase sequenator. These sequences showed identical amino acids at 69% of the positions when aligned with the corresponding residues of southern bean mosaic virus (SBMV).Crystals diffracting to better than 3 Å resolution were obtained by precipitating the virus with ammonium sulphate. The crystals belonged to rhombohedral space group R3 with α = 291·4 Å and α = 61·9°. Three-dimensional X-ray diffraction data on these crystals were collected to a resolution of 4·7 Å, using a Siemens-Nicolet area detector system. Self-rotation function studies revealed the icosahedral symmetry of the virus particles, as well as their precise orientation in the unit cell. Cross-rotation function and modelling studies with SBMV showed that it is a valid starting model for SMV structure determination. Low resolution phases computed using a polyalanine model of SBMV were subjected to refinement and extension by real-space electron density averaging and solvent flattening. The final electron density map revealed a polypeptide fold similar to SBMV. The single disulphide bridge of SBMV coat protein is retained in SMV. Four icosahedrally independent cation binding sites have been tentatively identified. Three of these sites, related by a quasi threefold axis, are also found in SBMV. The fourth site is situated on the quasi threefold axis. Aspartic acid residues, which replace Ile218 of SBMV from the quasi threefold-related subunits are suitable ligands to the cation at this site
Resumo:
Acyl carrier proteins (ACP) were purified to homogeneity in the active form from developing seeds of pisa (Actinodaphne hookeri) which synthesizes exclusively trilaurin and from ground nut (Arachis hypogaea) which synthesizes triacylglycerols containing long chain fatty acids. Two major isoforms of ACPs were purified from developing pisa seeds using DEAE-cellulose, Superose-6 FPLC and C-4 reversed phase HPLC chromatographic methods. In contrast, only a single form of ACP was present in ground nut seeds which was purified by anion-exchange and activated thiol-Sepharose 4B affinity chromatography. The two isoforms of ACPs from pisa showed nearly the same specific activity of 6,706 and 7,175 pmol per min per mg protein while ground nut ACP showed a specific activity of 3,893 pmol per min per mg protein when assayed using E. coli acyl-ACP synthetase and [1-C-14]palmitic acid. When compared with E. coli ACP, the purified ACPs from both the seeds showed considerable difference in their mobility in native PAGE, but showed similar mobility in SDS-PAGE under reducing conditions. In the absence of reducing agents formation of dimers was quite prominent. The ACPs from both the seed sources were acid- and heat-stable. The major isoform of pisa seed ACP and the ground nut ACP contain 91 amino acids with M(r) 11,616 and 1,228 respectively. However, there is significant variation in their amino acid composition. A comparision of the amino acid sequence in the N-terminal region of pisa and ground nut seed ACPs showed considerable homology between themselves and with other plant ACPs but not with E. coli ACP.
Resumo:
The relations between partial and integral properties of ternary solutions along composition trajectories suggested by Kohler, Colinet and Jacob, and along an arbitrary path are derived. The chemical potentials of the components are related to the slope of integral free energy by expressions involving the binary compositions generated by the intersections of the composition trajectory with the sides of the ternary triangle. Only along the Kohler composition trajectory it is possible to derive the integral free energy from the variation of the chemical potential of a single component with composition or vice versa. Along all other paths the differential of the integral free energy is related to two chemical potentials. The Gibbs-Duhem integration proposed by Darken for the ternary system uses the Kohler isogram. The relative merits of different limits for integration are discussed.
Resumo:
A method for the estimation of vapour pressure and partial pressure of subliming compounds under reduced pressure, using rising temperature thermogravimetry, is described in this paper. The method is based on our recently developed procedure to estimate the vapour pressure from ambient pressure thermogravimetric data using Langmuir equation. Using benzoic acid as the calibration standard, vapour pressure temperature curves are calculated at 80, 160 and 1000 mbar for salicylic acid and vanadyl bis-2,4-pentanedionate, a precursor used for chemical vapour deposition of vanadium oxides. Using a modification of the Langmuir equation, the partial pressure of these materials at different total pressures is also determined as a function of temperature. Such data can be useful for the deposition of multi-metal oxide thin films or doped thin films by chemical vapour deposition (CVD).
Resumo:
The applicability of a formalism involving an exponential function of composition x1 in interpreting the thermodynamic properties of alloys has been studied. The excess integral and partial molar free energies of mixing are expressed as: $$\begin{gathered} \Delta F^{xs} = a_o x_1 (1 - x_1 )e^{bx_1 } \hfill \\ RTln\gamma _1 = a_o (1 - x_1 )^2 (1 + bx_1 )e^{bx_1 } \hfill \\ RTln\gamma _2 = a_o x_1^2 (1 - b + bx_1 )e^{bx_1 } \hfill \\ \end{gathered} $$ The equations are used in interpreting experimental data for several relatively weakly interacting binary systems. For the purpose of comparison, activity coefficients obtained by the subregular model and Krupkowski’s formalism have also been computed. The present equations may be considered to be convenient in describing the thermodynamic behavior of metallic solutions.