189 resultados para Apollo 15 lunar soil

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil shrinkage curve represents a decrease of total porosity or an increase of bulk density with water loss. However, our knowledge of the dynamics of pores and their geometry during soil shrinkage is scarce, partially due to lack of reliable methods for determining soil pores in relation to change in soil water. This study aimed to investigate the dynamics of macropores (>30 mu m) of paddy soils during shrinkage. Two, paddy soils, which were sampled from one paddy field cultivated for 20 years (YPF) and the other one for over 100 years (OPF), represented difference in crack geometry in the field. Macropore parameters (volume, connectivity, and orientation of pores) and soil shrinkage parameters were determined on the same undisturbed soil cores by X-ray microtomography and shrinkage curve, respectively. Macroporosity was on average four times larger in the YPF than in the OPF whereas the shrinkage capacity was lower in the YPF as compared to the OPF (0.09 vs. 0.15 COLE). Soil shrinkage increased the volume of pores by 3.7% in the YPF and by 1.6% in the OPF as well as their connectivity. The formation of macropores occurred mostly in the proportional shrinkage phase. As a result, the slope of the proportional shrinkage phase was smaller in the YPF (0.65) than in the OPF (0.89). New macropores were cracks and extended pre-existing pores in the range of 225-1215 pm size without any preferential orientation. This work provides image evidences that in paddy soils with high shrinkage capacity more macropores are generated in the soil presenting a smaller proportional shrinkage slope. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In sub-humid South India, recent studies have shown that black soil areas (Vertisols and vertic Intergrades), located on flat valley bottoms, have been rejuvenated through the incision of streambeds, inducing changes in the pedoclimate and soil transformation. Joint pedological, geochemical and geophysical investigations were performed in order to better understand the ongoing processes and their contribution to the chemistry of local rivers. The seasonal rainfall causes cycles of oxidation and reduction in a perched watertable at the base of the black soil, while the reduced solutions are exported through a loamy sand network. This framework favours a ferrolysis process, which causes low base saturation and protonation of clay, leading to the weathering of 2:1 then 1:1 clay minerals. Maximum weathering conditions occur at the very end of the wet season, just before disappearance of the perched watertable. Therefore, the by-products of soil transformation are partially drained off and calcareous nodules, then further downslope, amorphous silica precipitate upon soil dehydration. The ferrolysed area is fringing the drainage system indicating that its development has been induced by the streambed incision. The distribution of C-14 ages of CaCO3 nodules suggests that the ferrolysis process started during the late Holocene, only about 2 kyr B.P. at the studied site and about 5 kyr B.P. at the watershed outlet. The results of this study are applied to an assessment of the physical erosion rate (4.8x10(-3) m/kyr) since the recent reactivation of the erosion process. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of reinforced earth structures depends on the mobilization of interfacial shearing resistance between soil and reinforcement. This criterion typically eliminates the use of fine-grained soil as a backfill material in reinforced earth structures. Considering the distribution of induced interfacial shear stress in soil around the surface of the reinforcement, it has been shown that only a thin zone of frictional material around the reinforcement is required to mobilize almost full interfacial shearing resistance of sand. Six series of pullout tests have been conducted, with different types of reinforcement, to study the effect of thickness of sand (frictional material) around the reinforcement on the pullout resistance. Sawdust and kaolin clay have been used as bulk backfill material, providing the soil with negligible friction. With low-friction-strength soil as bulk material, a 15-mm thickness of sand around the reinforcement is required to increase the interfacial shearing resistance to that with sand as the bulk material. With this new technique, low-frictional fine-grained soils can be used as bulk backfill material in reinforced earth constructions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Often the soil hydraulic parameters are obtained by the inversion of measured data (e.g. soil moisture, pressure head, and cumulative infiltration, etc.). However, the inverse problem in unsaturated zone is ill-posed due to various reasons, and hence the parameters become non-unique. The presence of multiple soil layers brings the additional complexities in the inverse modelling. The generalized likelihood uncertainty estimate (GLUE) is a useful approach to estimate the parameters and their uncertainty when dealing with soil moisture dynamics which is a highly non-linear problem. Because the estimated parameters depend on the modelling scale, inverse modelling carried out on laboratory data and field data may provide independent estimates. The objective of this paper is to compare the parameters and their uncertainty estimated through experiments in the laboratory and in the field and to assess which of the soil hydraulic parameters are independent of the experiment. The first two layers in the field site are characterized by Loamy sand and Loamy. The mean soil moisture and pressure head at three depths are measured with an interval of half hour for a period of 1 week using the evaporation method for the laboratory experiment, whereas soil moisture at three different depths (60, 110, and 200 cm) is measured with an interval of 1 h for 2 years for the field experiment. A one-dimensional soil moisture model on the basis of the finite difference method was used. The calibration and validation are approximately for 1 year each. The model performance was found to be good with root mean square error (RMSE) varying from 2 to 4 cm(3) cm(-3). It is found from the two experiments that mean and uncertainty in the saturated soil moisture (theta(s)) and shape parameter (n) of van Genuchten equations are similar for both the soil types. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effect of aging on swelling and swell-shrink behavior of a compacted expansive soil is investigated in this paper. An expansive soil having a liquid limit of 100% is used for this purpose. Compacted specimens were prepared and aged for a predetermined number of days (7, 15, 30, and 90 days) to study their swelling and swell-shrink behavior. It has been shown that aging improves the resistance to compression of compacted specimens. The swelling potentials of specimens also decreased with aging. The dominant factors that influence the aging effects are the water content and degree of saturation at the beginning of the aging process. The changed behavior of aged specimens is attributed to particle rearrangements and formation of bonds, which affect the surface area absorbing water during swelling. The cyclic swell-shrink tests on aged specimens indicated that the differences in vertical displacement during the first swelling were eliminated in the subsequent cycles when specimens were shrunk more, but the aging effect was found to persist with cycles for specimens subjected to lower shrinkage magnitudes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a laboratory trial to study the effectiveness of a waste-based binder to stabilize expansive soils. The proposed binders viz., Fly ash and/or Ground granulated Blast furnace slag (GGBS) were mixed with the expansive soil along with a small amount of lime to increase soil pH and enable pozzolanic reactions. The geotechnical characteristics of the various combinations of samples were investigated through the compaction tests, unconfined compression tests etc. It was found that the addition of GGBS with and without fly ash and lime has significant influence on the geotechnical characteristics of the soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reinforcing soil with fibers is a useful method for improving the strength and settlement response of soil. The soil and fiber characteristics and their interaction are some of the major factors affecting the strength of reinforced soil. The fibers are usually randomly distributed in the soil, and their orientation has a significant effect on the behavior of the reinforced soil. In the paper, a study of the effect of anisotropic distribution of fibers on the stress-strain response is presented. Based on the concept of the modified Cam clay model, an analytical model was formulated for the fiber-reinforced soil, and the effect of fiber orientation on the stress-strain behavior of soil was studied in detail. The results show that, as the inclination of fibers with the horizontal plane increased, the contribution of fibers in improving the strength of fiber-reinforced soil decreased. The effect of fibers is maximum when they are in the direction of extension, and vice versa. (C) 2014 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fungus-growing termites are involved in many ecological processes and play a central role in influencing soil dynamics in the tropics. The physical and chemical properties of their nest structures have been largely described; however less information is available concerning the relatively temporary structures made above-ground to access food items and protect the foraging space (the soil `sheetings'). This study investigated whether the soil physical and chemical properties of these constructions are constant or if they vary depending on the type of food they cover. Soil samples and soil sheetings were collected in a forest in India, from leaves on the ground (LEAF), fallen branches (WOOD), and vertical soil sheetings covering the bark of trees (TREE). In this environment, termite diversity was dominated by Odontotermes species, and especially Odontotermes feae and Odontotermes obesus. However, there was no clear niche differentiation and, for example, O. feae termites were found on all the materials. Compared with the putative parent soil (control), TREE sheetings showed the greatest (and most significant) differences (higher clay content and smaller clay particle sizes, lower C and N content and smaller delta C-13 and delta N-15), while LEAF sheetings were the least modified, though still significantly different than the control soil. We suggest that the termite diversity is a less important driver of potential soil modification than sheeting diversity. Further, there is evidence that construction properties are adapted to their prospective life-span, with relatively long-lasting structures being most different from the parent soil. (C) 2015 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article is aimed to delineate groundwater sources in Holocene deposits area in the Gulf of Mannar Coast from Southern India. For this purpose 2-D electrical resistivity tomography (ERT), hydrochemical and granulomerical studies were carried out and integrated to identify hydrogeological structures and portable groundwater resource in shallow depths which in general appears in the coastal tracts. The 2-D ERT was used to determine the two-dimensional subsurface geological formations by multicore cable with Wenner array. Low resistivity of 1-5 Omega m for saline water appeared due to calcite at the depth of about 5 m below the ground level (bgl). Sea water intrusion was observed around the maximum resistivity as 5 Omega m at the 8 m depth, bgl in the calcite environs, but the calcareous sandstone layer shows around 15-64 Omega m at the 6 m depth, bgl. The hydrochemical variation of TDS, HCO3-, Cl-, Na+, K+, Ca2+, and Mg2+ concentrations was observed for the saline and sea water intrusion in the groundwater system. The granulometic analysis shows that the study area was under the sea between 5400 and 3000 year ago. The events of ice melting an unnatural ice-stone rain/hail among 5000-4000 years ago resulted in the inundation of sea over the area and deposits of late Holocene marine transgression formation up to Puthukottai quartzite region for a stretch of around 17 km.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A plane strain elastic interaction analysis of a strip footing resting on a reinforced soil bed has been made by using a combined analytical and finite element method (FEM). In this approach the stiffness matrix for the footing has been obtained using the FEM, For the reinforced soil bed (halfplane) the stiffness matrix has been obtained using an analytical solution. For the latter, the reinforced zone has been idealised as (i) an equivalent orthotropic infinite strip (composite approach) and (ii) a multilayered system (discrete approach). In the analysis, the interface between the strip footing and reinforced halfplane has been assumed as (i) frictionless and (ii) fully bonded. The contact pressure distribution and the settlement reduction have been given for different depths of footing and scheme of reinforcement in soil. The load-deformation behaviour of the reinforced soil obtained using the above modelling has been compared with some available analytical and model test results. The equivalent orthotropic approach proposed in this paper is easy to program and is shown to predict the reinforcing effects reasonably well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on the swelling behaviour of mixtures of bentonite clay and nonswelling coarser fractions of different sizes and shapes reveal that observed swelling occurs only after the voids of the nonswelling particles are filled up with swollen clay particles. The magnitude of the swell within the voids, called intervoid swelling is large when the size and percentage of the nonswelling coarser fraction is large. The observable swell, after intervoid swelling, is called primary swelling and follows a rectangular hyperbolic relationship with time. The total swell per gram of the clay decreases with an increase in the size of the nonswelling fraction and with a decrease in the percentage of swelling clay. Time-swell relationships show that swelling continues to occur for a long time after the primary swelling, and this is called secondary swelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy-efficient, economical and durable building materials are essential for sustainable construction practices. The paper deals with production and properties of energy-efficient steam-cured stabilised soil blocks used fbr masonry construction. Problems of mixing expansive soil and lime, and production of blocks using soil-lime mixtures have been discussed briefly. Details of steam curing of stabilised soil blocks and properties of such blocks are given. A comparison of energy content of steam-cured soil blocks and burnt bricks is presented. It has been shown that energy-efficient steam cured soil blocks (consuming 35% less thermal energy compared to burnt clay bricks) having high compressive strength can be easily produced in a decentralised manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to propose a method to assess the long-term chemical weathering mass balance for a regolith developed on a heterogeneous silicate substratum at the small experimental watershed scale by adopting a combined approach of geophysics, geochemistry and mineralogy. We initiated in 2003 a study of the steep climatic gradient and associated geomorphologic features of the edge of the rifted continental passive margin of the Karnataka Plateau, Peninsular India. In the transition sub-humid zone of this climatic gradient we have studied the pristine forested small watershed of Mule Hole (4.3 km(2)) mainly developed on gneissic substratum. Mineralogical, geochemical and geophysical investigations were carried out (i) in characteristic red soil profiles and (ii) in boreholes up to 60 m deep in order to take into account the effect of the weathering mantle roots. In addition, 12 Electrical Resistivity Tomography profiles (ERT), with an investigation depth of 30 m, were generated at the watershed scale to spatially characterize the information gathered in boreholes and soil profiles. The location of the ERT profiles is based on a previous electromagnetic survey, with an investigation depth of about 6 m. The soil cover thickness was inferred from the electromagnetic survey combined with a geological/pedological survey. Taking into account the parent rock heterogeneity, the degree of weathering of each of the regolith samples has been defined using both the mineralogical composition and the geochemical indices (Loss on Ignition, Weathering Index of Parker, Chemical Index of Alteration). Comparing these indices with electrical resistivity logs, it has been found that a value of 400 Ohm m delineates clearly the parent rocks and the weathered materials, Then the 12 inverted ERT profiles were constrained with this value after verifying the uncertainty due to the inversion procedure. Synthetic models based on the field data were used for this purpose. The estimated average regolith thickness at the watershed scale is 17.2 m, including 15.2 m of saprolite and 2 m of soil cover. Finally, using these estimations of the thicknesses, the long-term mass balance is calculated for the average gneiss-derived saprolite and red soil. In the saprolite, the open-system mass-transport function T indicates that all the major elements except Ca are depleted. The chlorite and biotite crystals, the chief sources for Mg (95%), Fe (84%), Mn (86%) and K (57%, biotite only), are the first to undergo weathering and the oligoclase crystals are relatively intact within the saprolite with a loss of only 18%. The Ca accumulation can be attributed to the precipitation of CaCO3 from the percolating solution due to the current and/or the paleoclimatic conditions. Overall, the most important losses occur for Si, Mg and Na with -286 x 10(6) mol/ha (62% of the total mass loss), -67 x 10(6) mol/ha (15% of the total mass loss) and -39 x 10(6) mol/ha (9% of the total mass loss), respectively. Al, Fe and K account for 7%, 4% and 3% of the total mass loss, respectively. In the red soil profiles, the open-system mass-transport functions point out that all major elements except Mn are depleted. Most of the oligoclase crystals have broken down with a loss of 90%. The most important losses occur for Si, Na and Mg with -55 x 10(6) mol/ha (47% of the total mass loss), -22 x 10(6) mol/ha (19% of the total mass loss) and -16 x 10(6) mol/ha (14% of the total mass loss), respectively. Ca, Al, K and Fe account for 8%, 6%, 4% and 2% of the total mass loss, respectively. Overall these findings confirm the immaturity of the saprolite at the watershed scale. The soil profiles are more evolved than saprolite but still contain primary minerals that can further undergo weathering and hence consume atmospheric CO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to draw inferences regarding the properties of single cells responsible for co-operative behaviour in the slug of the soil amoeba Dictyostelium discoideum. The slug is an integrated multicellular mass formed by the aggregation of starved cells. The amoebae comprising the slug differentiate according to their spatial locations relative to one another, implying that, as in the case of other regulative embryos, they must be in mutual communication. We have previously shown that one manifestation of this communication is the time taken for the anteriormost fragment of the slug, the tip, to regenerate from slugs which have been rendered tipless by amputation. We present results of tip-regeneration experiments performed on genetically mosaic slugs. By comparing the mosaics with their component pure genotypes, we were able to discriminate between a set of otherwise equally plausible modes of intercellular signalling. Neither a'pacemaker' model, in which the overall rate of tip regeneration is determined by the cell with the highest frequency of autonomous oscillation, nor an 'independent-particle' model, in which the rate of regeneration is the arithmetical average of independent cell-dependent rates, is in quantitative accord with our findings. Our results are best explained by a form of signalling which operates by means of cell-to-cell relay. Therefore intercellular communication Seems to be essential for tip regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of N4P4Cl8(1) with sodium phenoxide (or phenol in the presence of triethylamine) has been studied under a variety of experimental conditions. The chloro(phenoxy)-derivatives, N4P4Cl8-n(OPh)n[n= 1 or 2 (mixture of four non-geminal isomers), 3(mixture of non-geminal isomers), 4(mixture of isomers), 5(mixture of isomers), 6(mixture of four non-geminal isomers), or 8], have been isolated by column chromatography over silica gel. Attempts to separate geometric isomers were unsuccessful. Structural elucidation of the products is based on the 31P n.m.r. data for the chloro-precursors and 1H and 31P n.m.r. spectra of the dimethylamino- and/or methoxy-derivatives. The chlorine-replacement pattern is discussed.