5 resultados para Antimonide
em Indian Institute of Science - Bangalore - Índia
Resumo:
Improvements in optical and electrical properties were observed after ruthenium passivation of gallium antimonide surfaces. On passivation, luminescence efficiency increased up to 50 times and surface state density reduced by two orders of magnitude. Also, the reverse leakage current was found to decrease by a factor of 30�40 times. Increase in carrier mobility as a result of grain boundary passivation in polycrystalline GaSb was observed. © 1995 American Institute of Physics.
Resumo:
The effect of hydrogen-plasma passivation on the optical and electrical properties of gallium antimonide bulk single crystals is presented. Fundamental changes of the radiative recombination after hydrogenation in undoped, zinc-doped, tellurium-doped, and codoped (with Zn and Te) GaSb are reported. The results of optical measurements indicate that passivation of acceptors is more efficient than that of the donors and, in general, the passivation efficiency depends on the doping level. Passivation of deep nonradiative centers is reflected by the gain of photoluminescence intensity and decrease in deep-level transient spectroscopy peak height. Extended defects like grain boundaries and dislocations have also been found to be passivated. The thermal stability of the passivated deep level and extended defects is higher than that of the shallow level. The kinetics of thermally released hydrogen in the bulk has been studied by reverse-bias annealing experiments.
Resumo:
Recent advances in nonsilica fiber technology have prompted the development of suitable materials for devices operating beyond 1.55 mu m. The III-V ternaries and quaternaries (AlGaIn)(AsSb) lattice matched to GaSb seem to be the obvious choice and have turned out to be promising candidates for high speed electronic and long wavelength photonic devices. Consequently, there has been tremendous upthrust in research activities of GaSb-based systems. As a matter of fact, this compound has proved to be an interesting material for both basic and applied research. At present, GaSb technology is in its infancy and considerable research has to be carried out before it can be employed for large scale device fabrication. This article presents an up to date comprehensive account of research carried out hitherto. It explores in detail the material aspects of GaSb starting from crystal growth in bulk and epitaxial form, post growth material processing to device feasibility. An overview of the lattice, electronic, transport, optical and device related properties is presented. Some of the current areas of research and development have been critically reviewed and their significance for both understanding the basic physics as well as for device applications are addressed. These include the role of defects and impurities on the structural, optical and electrical properties of the material, various techniques employed for surface and bulk defect passivation and their effect on the device characteristics, development of novel device structures, etc. Several avenues where further work is required in order to upgrade this III-V compound for optoelectronic devices are listed. It is concluded that the present day knowledge in this material system is sufficient to understand the basic properties and what should be more vigorously pursued is their implementation for device fabrication. (C) 1997 American Institute of Physics.
Resumo:
When radiation of sufficiently high energy is incident on the surface of a semiconductor photocathode, electrons are excited from the valence band to the conduction band and these may contribute to the photocurrent. The photocurrent in a single-layer cathode is found to be small, because of collisions within the cathode material, the electron affinity condition, etc. It is observed that when a thin layer of n-type cesium antimonide (Cs3Sb) is deposited over a p-type layer of sodium potassium antimonide (Na2KSb), there occurs a sharp rise in the photocurrent. The causes for the dramatic increase in the photocurrent obtainable from a sodium potassium antimonide cathode, by depositing a thin layer of cesium antimonide are analyzed in this article. It has been shown that the interface between sodium potassium antimonide and cesium antimonide can result in lowering of the electron affinity to a level below the bottom of the conduction band of sodium potassium antimonide. The drift field that arises at the heterointerface enables the electrons to reach the surface, leading to the emission of almost all the photogenerated electrons within the cathode. The processes involved in photoemission from such a double-layer cathode are examined from a theoretical point of view. The spectral response of the two-layer cathode is also found to be better than that of a single-layer cathode.
Resumo:
Undoped and Te-doped gallium antimonide (GaSb) layers have been grown on GaSb bulk substrates by the liquid phase epitaxial technique from Ga-rich and Sb-rich melts. The nucleation morphology of the grown layers has been studied as a function of growth temperature and substrate orientation. MOS structures have been fabricated on the epilayers to evaluate the native defect content in the grown layers from the C-V characteristics. Layers grown from antimony rich melts always exhibit p-type conductivity. In contrast, a type conversion from p- to n- was observed in layers grown from gallium rich melts below 400 degrees C. The electron mobility of undoped n-type layers grown from Ga-rich melts and tellurium doped layers grown from Sb- and Ga-rich solutions has been evaluated.