219 resultados para Ant colony optimization

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose four variants of recently proposed multi-timescale algorithm in [1] for ant colony optimization and study their application on a multi-stage shortest path problem. We study the performance of the various algorithms in this framework. We observe, that one of the variants consistently outperforms the algorithm [1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the modern business environment, meeting due dates and avoiding delay penalties are very important goals that can be accomplished by minimizing total weighted tardiness. We consider a scheduling problem in a system of parallel processors with the objective of minimizing total weighted tardiness. Our aim in the present work is to develop an efficient algorithm for solving the parallel processor problem as compared to the available heuristics in the literature and we propose the ant colony optimization approach for this problem. An extensive experimentation is conducted to evaluate the performance of the ACO approach on different problem sizes with the varied tardiness factors. Our experimentation shows that the proposed ant colony optimization algorithm is giving promising results compared to the best of the available heuristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Location management problem that arise in mobile computing networks is addressed. One method used in location management is to designate sonic of the cells in the network as "reporting cells". The other cells in the network are "non-reporting cells". Finding an optimal set of reporting cells (or reporting cell configuration) for a given network. is a difficult combinatorial optimization problem. In fact this is shown to be an NP-complete problem. in an earlier study. In this paper, we use the selective paging strategy and use an ant colony optimization method to obtain the best/optimal set of reporting cells for a given a network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work concerns with the static scheduling of jobs to parallel identical batch processors with incompatible job families for minimizing the total weighted tardiness. This scheduling problem is applicable in burn-in operations and wafer fabrication in semiconductor manufacturing. We decompose the problem into two stages: batch formation and batch scheduling, as in the literature. The Ant Colony Optimization (ACO) based algorithm called ATC-BACO algorithm is developed in which ACO is used to solve the batch scheduling problems. Our computational experimentation shows that the proposed ATC-BACO algorithm performs better than the available best traditional dispatching rule called ATC-BATC rule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a glowworm swarm based algorithm that finds solutions to optimization of multiple optima continuous functions. The algorithm is a variant of a well known ant-colony optimization (ACO) technique, but with several significant modifications. Similar to how each moving region in the ACO technique is associated with a pheromone value, the agents in our algorithm carry a luminescence quantity along with them. Agents are thought of as glowworms that emit a light whose intensity is proportional to the associated luminescence and have a circular sensor range. The glowworms depend on a local-decision domain to compute their movements. Simulations demonstrate the efficacy of the proposed glowworm based algorithm in capturing multiple optima of a multimodal function. The above optimization scenario solves problems where a collection of autonomous robots is used to form a mobile sensor network. In particular, we address the problem of detecting multiple sources of a general nutrient profile that is distributed spatially on a two dimensional workspace using multiple robots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a glowworm metaphor based distributed algorithm that enables a collection of minimalist mobile robots to split into subgroups, exhibit simultaneous taxis-behavior towards, and rendezvous at multiple radiation sources such as nuclear/hazardous chemical spills and fire-origins in a fire calamity. The algorithm is based on a glowworm swarm optimization (GSO) technique that finds multiple optima of multimodal functions. The algorithm is in the same spirit as the ant-colony optimization (ACO) algorithms, but with several significant differences. The agents in the glowworm algorithm carry a luminescence quantity called luciferin along with them. Agents are thought of as glowworms that emit a light whose intensity is proportional to the associated luciferin. The key feature that is responsible for the working of the algorithm is the use of an adaptive local-decision domain, which we use effectively to detect the multiple source locations of interest. The glowworms have a finite sensor range which defines a hard limit on the local-decision domain used to compute their movements. Extensive simulations validate the feasibility of applying the glowworm algorithm to the problem of multiple source localization. We build four wheeled robots called glowworms to conduct our experiments. We use a preliminary experiment to demonstrate the basic behavioral primitives that enable each glowworm to exhibit taxis behavior towards source locations and later demonstrate a sound localization task using a set of four glowworms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel genetic algorithm is developed by generating artificial chromosomes with probability control to solve the machine scheduling problems. Generating artificial chromosomes for Genetic Algorithm (ACGA) is closely related to Evolutionary Algorithms Based on Probabilistic Models (EAPM). The artificial chromosomes are generated by a probability model that extracts the gene information from current population. ACGA is considered as a hybrid algorithm because both the conventional genetic operators and a probability model are integrated. The ACGA proposed in this paper, further employs the ``evaporation concept'' applied in Ant Colony Optimization (ACO) to solve the permutation flowshop problem. The ``evaporation concept'' is used to reduce the effect of past experience and to explore new alternative solutions. In this paper, we propose three different methods for the probability of evaporation. This probability of evaporation is applied as soon as a job is assigned to a position in the permutation flowshop problem. Experimental results show that our ACGA with the evaporation concept gives better performance than some algorithms in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent times computational algorithms inspired by biological processes and evolution are gaining much popularity for solving science and engineering problems. These algorithms are broadly classified into evolutionary computation and swarm intelligence algorithms, which are derived based on the analogy of natural evolution and biological activities. These include genetic algorithms, genetic programming, differential evolution, particle swarm optimization, ant colony optimization, artificial neural networks, etc. The algorithms being random-search techniques, use some heuristics to guide the search towards optimal solution and speed-up the convergence to obtain the global optimal solutions. The bio-inspired methods have several attractive features and advantages compared to conventional optimization solvers. They also facilitate the advantage of simulation and optimization environment simultaneously to solve hard-to-define (in simple expressions), real-world problems. These biologically inspired methods have provided novel ways of problem-solving for practical problems in traffic routing, networking, games, industry, robotics, economics, mechanical, chemical, electrical, civil, water resources and others fields. This article discusses the key features and development of bio-inspired computational algorithms, and their scope for application in science and engineering fields.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we show the applicability of Ant Colony Optimisation (ACO) techniques for pattern classification problem that arises in tool wear monitoring. In an earlier study, artificial neural networks and genetic programming have been successfully applied to tool wear monitoring problem. ACO is a recent addition to evolutionary computation technique that has gained attention for its ability to extract the underlying data relationships and express them in form of simple rules. Rules are extracted for data classification using training set of data points. These rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in ACO based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The classification accuracy obtained in ACO based approach is as good as obtained in other biologically inspired techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Remote sensing provides a lucid and effective means for crop coverage identification. Crop coverage identification is a very important technique, as it provides vital information on the type and extent of crop cultivated in a particular area. This information has immense potential in the planning for further cultivation activities and for optimal usage of the available fertile land. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Further, image classification forms the core of the solution to the crop coverage identification problem. No single classifier can prove to satisfactorily classify all the basic crop cover mapping problems of a cultivated region. We present in this paper the experimental results of multiple classification techniques for the problem of crop cover mapping of a cultivated region. A detailed comparison of the algorithms inspired by social behaviour of insects and conventional statistical method for crop classification is presented in this paper. These include the Maximum Likelihood Classifier (MLC), Particle Swarm Optimisation (PSO) and Ant Colony Optimisation (ACO) techniques. The high resolution satellite image has been used for the experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper focuses on optimisation algorithms inspired by swarm intelligence for satellite image classification from high resolution satellite multi- spectral images. Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to satisfactorily classify all the basic land cover classes of an urban region. In both supervised and unsupervised classification methods, the evolutionary algorithms are not exploited to their full potential. This work tackles the land map covering by Ant Colony Optimisation (ACO) and Particle Swarm Optimisation (PSO) which are arguably the most popular algorithms in this category. We present the results of classification techniques using swarm intelligence for the problem of land cover mapping for an urban region. The high resolution Quick-bird data has been used for the experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we present a generic method/model for multi-objective design optimization of laminated composite components, based on Vector Evaluated Artificial Bee Colony (VEABC) algorithm. VEABC is a parallel vector evaluated type, swarm intelligence multi-objective variant of the Artificial Bee Colony algorithm (ABC). In the current work a modified version of VEABC algorithm for discrete variables has been developed and implemented successfully for the multi-objective design optimization of composites. The problem is formulated with multiple objectives of minimizing weight and the total cost of the composite component to achieve a specified strength. The primary optimization variables are the number of layers, its stacking sequence (the orientation of the layers) and thickness of each layer. The classical lamination theory is utilized to determine the stresses in the component and the design is evaluated based on three failure criteria: failure mechanism based failure criteria, maximum stress failure criteria and the tsai-wu failure criteria. The optimization method is validated for a number of different loading configurations-uniaxial, biaxial and bending loads. The design optimization has been carried for both variable stacking sequences, as well fixed standard stacking schemes and a comparative study of the different design configurations evolved has been presented. Finally the performance is evaluated in comparison with other nature inspired techniques which includes Particle Swarm Optimization (PSO), Artificial Immune System (AIS) and Genetic Algorithm (GA). The performance of ABC is at par with that of PSO, AIS and GA for all the loading configurations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a chance-constrained linear programming formulation for reservoir operation of a multipurpose reservoir. The release policy is defined by a chance constraint that the probability of irrigation release in any period equalling or exceeding the irrigation demand is at least equal to a specified value P (called reliability level). The model determines the maximum annual hydropower produced while meeting the irrigation demand at a specified reliability level. The model considers variation in reservoir water level elevation and also the operating range within which the turbine operates. A linear approximation for nonlinear power production function is assumed and the solution obtained within a specified tolerance limit. The inflow into the reservoir is considered random. The chance constraint is converted into its deterministic equivalent using a linear decision rule and inflow probability distribution. The model application is demonstrated through a case study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fuzzy waste-load allocation model, FWLAM, is developed for water quality management of a river system using fuzzy multiple-objective optimization. An important feature of this model is its capability to incorporate the aspirations and conflicting objectives of the pollution control agency and dischargers. The vagueness associated with specifying the water quality criteria and fraction removal levels is modeled in a fuzzy framework. The goals related to the pollution control agency and dischargers are expressed as fuzzy sets. The membership functions of these fuzzy sets are considered to represent the variation of satisfaction levels of the pollution control agency and dischargers in attaining their respective goals. Two formulations—namely, the MAX-MIN and MAX-BIAS formulations—are proposed for FWLAM. The MAX-MIN formulation maximizes the minimum satisfaction level in the system. The MAX-BIAS formulation maximizes a bias measure, giving a solution that favors the dischargers. Maximization of the bias measure attempts to keep the satisfaction levels of the dischargers away from the minimum satisfaction level and that of the pollution control agency close to the minimum satisfaction level. Most of the conventional water quality management models use waste treatment cost curves that are uncertain and nonlinear. Unlike such models, FWLAM avoids the use of cost curves. Further, the model provides the flexibility for the pollution control agency and dischargers to specify their aspirations independently.