13 resultados para Animal signaling and communication
em Indian Institute of Science - Bangalore - Índia
Resumo:
Autonomous mission control, unlike automatic mission control which is generally pre-programmed to execute an intended mission, is guided by the philosophy of carrying out a complete mission on its own through online sensing, information processing, and control reconfiguration. A crucial cornerstone of this philosophy is the capability of intelligence and of information sharing between unmanned aerial vehicles (UAVs) or with a central controller through secured communication links. Though several mission control algorithms, for single and multiple UAVs, have been discussed in the literature, they lack a clear definition of the various autonomous mission control levels. In the conventional system, the ground pilot issues the flight and mission control command to a UAV through a command data link and the UAV transmits intelligence information, back to the ground pilot through a communication link. Thus, the success of the mission depends entirely on the information flow through a secured communication link between ground pilot and the UAV In the past, mission success depended on the continuous interaction of ground pilot with a single UAV, while present day applications are attempting to define mission success through efficient interaction of ground pilot with multiple UAVs. However, the current trend in UAV applications is expected to lead to a futuristic scenario where mission success would depend only on interaction among UAV groups with no interaction with any ground entity. However, to reach this capability level, it is necessary to first understand the various levels of autonomy and the crucial role that information and communication plays in making these autonomy levels possible. This article presents a detailed framework of UAV autonomous mission control levels in the context of information flow and communication between UAVs and UAV groups for each level of autonomy.
Resumo:
Mycobacterium tuberculosis, an etiological agent of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Pathogenic mycobacteria survive in the host by subverting host innate immunity. Dendritic cells (DCs) are professional antigen-presenting cells that are vital for eliciting immune responses to infectious agents, including pathogenic mycobacteria. DCs orchestrate distinct Th responses based on the signals they receive. In this perspective, deciphering the interactions of the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family of proteins of M. tuberculosis with DCs assumes significant pathophysiological attributes. In this study, we demonstrate that Rv1917c (PPE34), a representative member of the proline-proline-glutamic-major polymorphic tandem repeat family, interacts with TLR2 and triggers functional maturation of human DCs. Signaling perturbations implicated a critical role for integrated cross-talk among PI3K-MAPK and NF-kappa B signaling cascades in Rv1917c-induced maturation of DCs. However, this maturation of DCs was associated with a secretion of high amounts of anti-inflammatory cytokine IL-10, whereas Th1-polarizing cytokine IL-12 was not induced. Consistent with these results, Rv1917c-matured DCs favored secretion of IL-4, IL-5, and IL-10 from CD4(+) T cells and contributed to Th2-skewed cytokine balance ex vivo in healthy individuals and in patients with pulmonary tuberculosis. Interestingly, the Rv1917c-skewed Th2 immune response involved induced expression of cyclooxygenase-2 (COX-2) in DCs. Taken together, these results indicate that Rv1917c facilitates a shift in the ensuing immunity toward the Th2 phenotype and could aid in immune evasion by mycobacteria.
Resumo:
The problem of sensor-network-based distributed intrusion detection in the presence of clutter is considered. It is argued that sensing is best regarded as a local phenomenon in that only sensors in the immediate vicinity of an intruder are triggered. In such a setting, lack of knowledge of intruder location gives rise to correlated sensor readings. A signal-space view-point is introduced in which the noise-free sensor readings associated to intruder and clutter appear as surfaces f(s) and f(g) and the problem reduces to one of determining in distributed fashion, whether the current noisy sensor reading is best classified as intruder or clutter. Two approaches to distributed detection are pursued. In the first, a decision surface separating f(s) and f(g) is identified using Neyman-Pearson criteria. Thereafter, the individual sensor nodes interactively exchange bits to determine whether the sensor readings are on one side or the other of the decision surface. Bounds on the number of bits needed to be exchanged are derived, based on communication-complexity (CC) theory. A lower bound derived for the two-party average case CC of general functions is compared against the performance of a greedy algorithm. Extensions to the multi-party case is straightforward and is briefly discussed. The average case CC of the relevant greaterthan (CT) function is characterized within two bits. Under the second approach, each sensor node broadcasts a single bit arising from appropriate two-level quantization of its own sensor reading, keeping in mind the fusion rule to be subsequently applied at a local fusion center. The optimality of a threshold test as a quantization rule is proved under simplifying assumptions. Finally, results from a QualNet simulation of the algorithms are presented that include intruder tracking using a naive polynomial-regression algorithm. 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper we review the most peculiar and interesting information-theoretic and communications features of fading channels. We first describe the statistical models of fading channels which are frequently used in the analysis and design of communication systems. Next, we focus on the information theory of fading channels, by emphasizing capacity as the most important performance measure. Both single-user and multiuser transmission are examined. Further, we describe how the structure of fading channels impacts code design, and finally overview equalization of fading multipath channels.
Resumo:
RAD51C, a RAD51 paralog, has been implicated in homologous recombination (HR), and germ line mutations in RAD51C are known to cause Fanconi anemia (FA)-like disorder and breast and ovarian cancers. The role of RAD51C in the FA pathway of DNA interstrand cross-link (ICL) repair and as a tumor suppressor is obscure. Here, we report that RAD51C deficiency leads to ICL sensitivity, chromatid-type errors, and G(2)/M accumulation, which are hallmarks of the FA phenotype. We find that RAD51C is dispensable for ICL unhooking and FANCD2 monoubiquitination but is essential for HR, confirming the downstream role of RAD51C in ICL repair. Furthermore, we demonstrate that RAD51C plays a vital role in the HR-mediated repair of DNA lesions associated with replication. Finally, we show that RAD51C participates in ICL and double strand break-induced DNA damage signaling and controls intra-S-phase checkpoint through CHK2 activation. Our analyses with pathological mutants of RAD51C that were identified in FA and breast and ovarian cancers reveal that RAD51C regulates HR and DNA damage signaling distinctly. Together, these results unravel the critical role of RAD51C in the FA pathway of ICL repair and as a tumor suppressor.
Resumo:
This paper considers the problem of identifying the footprints of communication of multiple transmitters in a given geographical area. To do this, a number of sensors are deployed at arbitrary but known locations in the area, and their individual decisions regarding the presence or absence of the transmitters' signal are combined at a fusion center to reconstruct the spatial spectral usage map. One straightforward scheme to construct this map is to query each of the sensors and cluster the sensors that detect the primary's signal. However, using the fact that a typical transmitter footprint map is a sparse image, two novel compressive sensing based schemes are proposed, which require significantly fewer number of transmissions compared to the querying scheme. A key feature of the proposed schemes is that the measurement matrix is constructed from a pseudo-random binary phase shift applied to the decision of each sensor prior to transmission. The measurement matrix is thus a binary ensemble which satisfies the restricted isometry property. The number of measurements needed for accurate footprint reconstruction is determined using compressive sampling theory. The three schemes are compared through simulations in terms of a performance measure that quantifies the accuracy of the reconstructed spatial spectral usage map. It is found that the proposed sparse reconstruction technique-based schemes significantly outperform the round-robin scheme.
Resumo:
S100 family of calcium-binding proteins is commonly upregulated in a variety of tumor types and is often associated with tumor progression. Among several S100 members, altered expression of S100A2 is a potential diagnostic and prognostic marker in cancer. Several reports suggest a role for S100A2 in metastasis. Earlier, our studies established regulation of S100A2 by transforming growth factor- (TGF-) and its involvement in TGF--mediated cancer cell invasion and migration. However, the molecular mechanisms of S100A2 protumorigenic actions remain unexplored. In the present study, we demonstrate that overexpression of S100A2 in A549 lung cancer cells induced epithelialmesenchymal transition (EMT) followed by increased invasion, loose colony morphology in soft agar and enhanced Akt phosphorylation (Ser-473). Furthermore, overexpression of S100A2 led to increased tumor growth in immunocompromised mice. In agreement, immunohistochemical examination of resected xenograft tumors established inverse correlation between S100A2 and E-cadherin expression together with activated Akt signaling. Interestingly, our study demonstrates a strong dependence of S100A2 and Smad3 in TGF--induced Hep3B cell EMT and invasion. Most importantly, we demonstrate that these effects of S100A2 are manifested through functional interaction with Smad3, which is enhanced in the presence of high calcium and TGF-. S100A2 stabilizes Smad3 and binds to its C-terminal MH2 domain. Additionally, loss of S100A2 attenuates the transcription of TGF-/Smad3 target genes involved in tumor promotion, such as PA1-1 and vimentin. Collectively, our findings present the first mechanistic details of S100A2 protumorigenic actions and its involvement in TGF--mediated cancer cell invasion and EMT.
Resumo:
Increasingly, scientific collaborations and contracts cross country borders. The need for assurance that the quality of animal welfare and the caliber of animal research conducted are equivalent among research partners around the globe is of concern to the scientific and laboratory animal medicine communities, the general public, and other key stakeholders. Therefore, global harmonization of animal care and use standards and practices, with the welfare of the animals as a cornerstone, is essential. In the evolving global landscape of enhanced attention to animal welfare, a widely accepted path to achieving this goal is the successful integration of the 3Rs in animal care and use programs. Currently, awareness of the 3Rs, their implementation, and the resulting animal care and use standards and practices vary across countries. This variability has direct effects on the animals used in research and potentially the data generated and may also have secondary effects on the country's ability to be viewed as a global research partner. Here we review the status of implementation of the 3Rs worldwide and focus on 3 countries-Brazil, China and India-with increasing economic influence and an increasing footprint in the biomedical research enterprise.
Resumo:
Protein structure networks are constructed for the identification of long-range signaling pathways in cysteinyl tRNA synthetase (CysRS). Molecular dynamics simulation trajectory of CysRS-ligand complexes were used to determine conformational ensembles in order to gain insight into the allosteric signaling paths. Communication paths between the anticodon binding region and the aminoacylation region have been identified. Extensive interaction between the helix bundle domain and the anticodon binding domain, resulting in structural rigidity in the presence of tRNA, has been detected. Based on the predicted model, six residues along the communication paths have been examined by mutations (single and double) and shown to mediate a coordinated coupling between anticodon recognition and activation of amino acid at the active site. This study on CysRS clearly shows that specific key residues, which are involved in communication between distal sites in allosteric proteins but may be elusive in direct structure analysis, can be identified from dynamics of protein structure networks.
Resumo:
A construction for a family of sequences over the 8-ary AM-PSK constellation that has maximum nontrivial correlation magnitude bounded as theta(max) less than or similar to root N is presented here. The famfly is asymptotically optimal with respect to the Welch bound on maximum magnitude of correlation. The 8-ary AM-PSK constellation is a subset of the 16-QAM constellation. We also construct two families of sequences over 16-QAM with theta(max) less than or similar to root 2 root N. These families are constructed by interleaving sets of sequences. A construction for a famBy of low-correlation sequences over QAM alphabet of size 2(2m) is presented with maximum nontrivial normalized correlation parameter bounded above by less than or similar to a root N, where N is the period of the sequences in the family and where a ranges from 1.61 in the case of 16-QAM modulation to 2.76 for large m. When used in a CDMA setting, the family will permit each user to modulate the code sequence with 2m bits of data. Interestingly, the construction permits users on the reverse link of the CDMA channel to communicate using varying data rates by switching between sequence famflies; associated to different values of the parameter m. Other features of the sequence families are improved Euclidean distance between different data symbols in comparison with PSK signaling and compatibility of the QAM sequence families with sequences belonging to the large quaternary sequence families {S(p)}.
Resumo:
SEPALLATA (SEP) MADS box transcription factors mediate floral development in association with other regulators. Mutants in five rice (Oryza sativa) SEP genes suggest both redundant and unique functions in panicle branching and floret development. LEAFY HULL STERILE1/OsMADS1, from a grass-specific subgroup of LOFSEP genes, is required for specifying a single floret on the spikelet meristem and for floret organ development, but its downstream mechanisms are unknown. Here, key pathways and directly modulated targets of OsMADS1 were deduced from expression analysis after its knockdown and induction in developing florets and by studying its chromatin occupancy at downstream genes. The negative regulation of OsMADS34, another LOFSEP gene, and activation of OsMADS55, a SHORT VEGETATIVE PHASE-like floret meristem identity gene, show its role in facilitating the spikelet-to-floret meristem transition. Direct regulation of other transcription factor genes like OsHB4 (a class III homeodomain Leu zipper member), OsBLH1 (a BEL1-like homeodomain member), OsKANADI2, OsKANADI4, and OsETTIN2 show its role in meristem maintenance, determinacy, and lateral organ development. We found that the OsMADS1 targets OsETTIN1 and OsETTIN2 redundantly ensure carpel differentiation. The multiple effects of OsMADS1 in promoting auxin transport, signaling, and auxin-dependent expression and its direct repression of three cytokinin A-type response regulators show its role in balancing meristem growth, lateral organ differentiation, and determinacy. Overall, we show that OsMADS1 integrates transcriptional and signaling pathways to promote rice floret specification and development.
Resumo:
Autophagy is one of the major immune mechanisms engaged to clear intracellular infectious agents. However, several pathogens have evolved strategies to evade autophagy. Here, we demonstrated that Mycobacteria, Shigella, and Listeria but not Klebsiella, Staphylococcus, and Escherichia inhibit IFNG-induced autophagy in macrophages by evoking selective and robust activation of WNT and SHH pathways via MTOR. Utilization of gain- or loss-of-function analyses as well as mir155-null macrophages emphasized the role of MTOR-responsive epigenetic modifications in the induction of Mir155 and Mir31. Importantly, cellular levels of PP2A, a phosphatase, were regulated by Mir155 and Mir31 to fine-tune autophagy. Diminished expression of PP2A led to inhibition of GSK3B, thus facilitating the prolonged activation of WNT and SHH signaling pathways. Sustained WNT and SHH signaling effectuated the expression of anti-inflammatory lipoxygenases, which in tandem inhibited IFNG-induced JAK-STAT signaling and contributed to evasion of autophagy. Altogether, these results established a role for new host factors and inhibitory mechanisms employed by the pathogens to limit autophagy, which could be targeted for therapeutic interventions.