3 resultados para Analyse non linéaire
em Indian Institute of Science - Bangalore - Índia
Resumo:
Fracture behaviour of notched and un-notched plain concrete slender beams subjected to three-point or four-point bending is analyzed through a one-dimensional model, also called Softening Beam Model. Fundamental equations of equilibrium are used to develop the model. The influence of structural size in altering the fracture mode from brittle fracture to plastic collapse is explained through the stress distribution across the uncracked ligament obtained by varying the strain softening modulus. It is found that at the onset of fracture instability, stress at the crack tip is equal to zero. The maximum load and fracture load are found to be different and a unique value for the fracture load is obtained. It is shown that the length of the fracture process zone depends on the value of the strain softening modulus. Theoretical limits for fracture process zone length are also calculated. Several nonlinear fracture parameters, such as, crack tip opening displacement, crack mouth opening displacement and fracture energy are computed for a wide variety of beam specimens reported in the literature and are found to compare very well with experimental and theoretical results. It is demonstrated that by following a simple procedure, both pre-peak and post-peak portions of load versus crack mouth opening displacement curve can be obtained quite accurately. Further, a simple procedure to calculate the maximum load is also developed. The predicted values of maximum load are found to agree well with the experimental values. The Softening Beam Model (SBM), proposed in this investigation is very simple and is based on rational considerations. It can completely describe the fracture process from the beginning of formation of the fracture process zone till the onset of fracture instability.A l'aide d'un modèle unidimensionnel dit ldquoSoftening Beam Modelrdquo (SBM), on analyse le comportement à rupture de poutres élancées pleines entaillées ou non, soumises en flexion en trois ou quatre points. Des équations fondamentales d'équilibre sont utilisées pour développer le modèle. On explique l'influence de la taille du composant sur l'altération du mode de rupture en rupture fragile et en effondrement plastique par la distribution par la distribution des contraintes sur le ligament non fissuré lorsque varie le module d'adoucissement. On trouve que la contrainte à l'extrémité de la fissure est nulle est nulle au début de l'instabilité de la rupture. La charge maximum et la charge à la rupture sont trouvées différentes, et on obtient une valeur unique de la charge à la rupture. On montre que la longueur de la zone concernée par le processus de rupture d'pend de la valeur du module d'adoucissement. On calcule également les limites théoriques de longueur de cette zone. Divers paramètres de rupture non linéaire sont calculés pour une large gamme d'éprouvettes en poutres reprises dans la littérature; on trouve qu'il existe une bonne concordance avec les résultats expérimentaux et théoriques. On démontre qu'en suivant une procédure simple on peut obtenir avec une bonne précision la courbe reliant les portions avant et après le pic de sollicitation en fonction du COD de la fissure. En outre, on développe une procédure simple pour calculer la charge maximum. Les valeurs prédites sont en bon accord avec les valeurs expérimentales. Le modèle SBM proposé est très simple et est basé sur des considérations rationnelles. Il est susceptible de décrire complètement le processus de rupture depuis le début de la formation de la zone intéressée jusqu'à l'amorçage de la rupture instable.
Resumo:
A new finite element method is developed to analyse non-conservative structures with more than one parameter behaving in a stochastic manner. As a generalization, this paper treats the subsequent non-self-adjoint random eigenvalue problem that arises when the material property values of the non-conservative structural system have stochastic fluctuations resulting from manufacturing and measurement errors. The free vibration problems of stochastic Beck's column and stochastic Leipholz column whose Young's modulus and mass density are distributed stochastically are considered. The stochastic finite element method that is developed, is implemented to arrive at a random non-self-adjoint algebraic eigenvalue problem. The stochastic characteristics of eigensolutions are derived in terms of the stochastic material property variations. Numerical examples are given. It is demonstrated that, through this formulation, the finite element discretization need not be dependent on the characteristics of stochastic processes of the fluctuations in material property value.
Resumo:
Flows with velocity profiles very different from the parabolic velocity profile can occur in the entrance region of a tube as well as in tubes with converging/diverging cross-sections. In this paper, asymptotic and numerical studies are undertaken to analyse the temporal stability of such 'non-parabolic' flows in a flexible tube in the limit of high Reynolds numbers. Two specific cases are considered: (i) developing flow in a flexible tube; (ii) flow in a slightly converging flexible tube. Though the mean velocity profile contains both axial and radial components, the flow is assumed to be locally parallel in the stability analysis. The fluid is Newtonian and incompressible, while the flexible wall is modelled as a viscoelastic solid. A high Reynolds number asymptotic analysis shows that the non-parabolic velocity profiles can become unstable in the inviscid limit. This inviscid instability is qualitatively different from that observed in previous studies on the stability of parabolic flow in a flexible tube, and from the instability of developing flow in a rigid tube. The results of the asymptotic analysis are extended numerically to the moderate Reynolds number regime. The numerical results reveal that the developing flow could be unstable at much lower Reynolds numbers than the parabolic flow, and hence this instability can be important in destabilizing the fluid flow through flexible tubes at moderate and high Reynolds number. For flow in a slightly converging tube, even small deviations from the parabolic profile are found to be sufficient for the present instability mechanism to be operative. The dominant non-parallel effects are incorporated using an asymptotic analysis, and this indicates that non-parallel effects do not significantly affect the neutral stability curves. The viscosity of the wall medium is found to have a stabilizing effect on this instability.