3 resultados para Alveolar Bone Resorption
em Indian Institute of Science - Bangalore - Índia
Resumo:
Osteoporosis is a disease of low bone mass most often caused by an increase in bone resorption that is not sufficiently compensated for by a corresponding increase in bone formation(1). As gut-derived serotonin (GDS) inhibits bone formation(2), we asked whether hampering its biosynthesis could treat osteoporosis through an anabolic mechanism (that is, by increasing bone formation). We synthesized and used LP533401, a small molecule inhibitor of tryptophan hydroxylase-1 (Tph-1), the initial enzyme in GDS biosynthesis. Oral administration of this small molecule once daily for up to six weeks acts prophylactically or therapeutically, in a dose-dependent manner, to treat osteoporosis in ovariectomized rodents because of an isolated increase in bone formation. These results provide a proof of principle that inhibiting GDS biosynthesis could become a new anabolic treatment for osteoporosis.
Resumo:
The most important property of a bone cement or a bone substitute in load bearing orthopaedic implants is good integration with host bone with reduced bone resorption and increased bone regeneration at the implant interface. Long term implantation of metal-based joint replacements often results in corrosion and particle release, initiating chronic inflammation leading onto osteoporosis of host bone. An alternative solution is the coating of metal implants with hydroxyapatite (HA) or bioglass or the use of bulk bioglass or HA-based composites. In the above perspective, the present study reports the in vivo biocompatibility and bone healing of the strontium (Sr)-stabilized bulk glass ceramics with the nominal composition of 4.5SiO(2)-3Al(2)O(3)-1.5P(2)O(5)-3SrO-2SrF(2) during short term implantation of up to 12 weeks in rabbit animal model. The progression of healing and bone regeneration was qualitatively and quantitatively assessed using fluorescence microscopy, histological analysis and micro-computed tomography. The overall assessment of the present study establishes that the investigated glass ceramic is biocompatible in vivo with regards to local effects after short term implantation in rabbit animal model. Excellent healing was observed, which is comparable to that seen in response to a commercially available implant of HA-based bioglass alone. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We investigated the potential of using novel zoledronic acid (ZOL)-hydroxyapatite (HA) nanoparticle based drug formulation in a rat model of postmenopausal osteoporosis. By a classical adsorption method, nanoparticles of HA loaded with ZOL (HNLZ) drug formulation with a size range of 100-130 nm were prepared. 56 female Wistar rats were ovariectomized (OVX) or sham-operated at 3 months of age. Twelve weeks post surgery, rats were randomized into seven groups and treated with various doses of HNLZ (100, 50 and 25 mu g/kg, intravenous single dose), ZOL (100 mu g/kg, intravenous single dose) and HA nanoparticle (100 mu g/kg, intravenous single dose). Untreated OVX and sham OVX served as controls. After three months treatment period, we evaluated the mechanical properties of the lumbar vertebra and femoral mid-shaft. Femurs were also tested for trabecular microarchitecture. Sensitive biochemical markers of bone formation and bone resorption in serum were also determined. With respect to improvement in the mechanical strength of the lumbar spine and the femoral mid-shaft, the therapy with HNLZ drug formulation was more effective than ZOL therapy in OVX rats. Moreover, HNLZ drug therapy preserved the trabecular microarchitecture better than ZOL therapy in OVX rats. Furthermore, the HNLZ drug formulation corrected increase in serum levels of bone-specific alkaline phosphatase, procollagen type I N-terminal propeptide, osteocalcin, tartrate-resistant acid phosphatase 5b and C-telopeptide of type 1 collagen better than ZOL therapy in OVX rats. The results strongly suggest that HNLZ novel drug formulation appears to be more effective approach for treating severe osteoporosis in humans. (C) 2014 Elsevier B.V. All rights reserved.