8 resultados para Altruism.
em Indian Institute of Science - Bangalore - Índia
Resumo:
Social insects such as ants, bees, wasps and termites exhibit extreme forms of altruism where some individuals remain sterile and assist other individuals in reproduction. Hamilton's inclusive fitness theory provides a powerful framework for investigating the evolution of such altruism. Using the paper wasp Ropalidia marginata, we have quantified and delineated the role of ecological, physiological, genetic and demographic factors in social evolution. An interesting feature of the models we have developed is their symmetry so that either altruism or selfishness can evolve, depending on the numerical values of various parameters. This suggests that selfish/solitary behaviour must occasionally re-emerge even from the eusocial state, It is useful to contemplate expected intermediate states during such potential reversals. We can perhaps envisage three successive steps in such a hypothetical process: i) workers revolt against the hegemony of the queen and challenge her status as the sole reproductive, ii) workers stop producing queens and one or more of them function as egg layers (functional queen/s) capable of producing both haploid as well as diploid offspring and iii) social evolution reverses completely so that a eusocial species becomes solitary, at least facultatively. It appears that the third step, namely transition from eusociality to the solitary state, is rare and has been restricted to transitions from the primitively eusocial state only. The absence of transitions from the highly eusocial state to the solitary state may be attributed to a number of 'preventing mechanisms' such as (a) queen control of workers (b) loss of spermathecae and ability to mate (c) morphological specialization (d) caste polyethism and (e) homeostasis, which must each make the transition difficult and, taken together, perhaps very difficult. However, the discovery of a transition from the highly eusocial to the solitary state can hardly he ruled out, given that little or no effort has gone into its detection. In this paper I discuss social evolution and its possible reversal and cite potential examples of stages in the transition from the social to the solitary.
Resumo:
This study addresses the issues of spatial distribution, dispersal, and genetic heterogeneity in social groups of the cellular slime molds (CSMs). The CSMs are soil amoebae with an unusual life cycle that consists of alternating solitary and social phases. Because the social phase involves division of labor with what appears to be an extreme form of "altruism", the CSMs raise interesting evolutionary questions regarding the origin and maintenance of sociality. Knowledge of the genetic structure of social groups in the wild is necessary for answering these questions. We confirm that CSMs are widespread in undisturbed forest soil from South India. They are dispersed over long distances via the dung of a variety of large mammals. Consistent with this mode of dispersal, most social groups in the two species examined for detailed study, Dictyostelium giganteum and Dictyostelium purpureum, are multi-clonal.
Resumo:
Altruism is defined as any behaviour that lowers the Darwinian fitness of the actor while increasing that of the recipient. Such altruism (especially in the form of lifetime sterility exhibited by sterile workers in eusocial insects such as ants, bees, wasps and termites) has long been considered a major difficulty for the theory of natural selection. In the 1960s W. D. Hamilton potentially solved this problem by defining a new measure of fitness that he called inclusive fitness, which also included the effect of an individual's action on the fitness of genetic relatives. This has come to be known as inclusive fitness theory, Hamilton's rule or kin selection. E. O. Wilson almost single-handedly popularized this new approach in the 1970s and thus helped create a large body of new empirical research and a large community of behavioural ecologists and kin selectionists. Adding thrill and drama to our otherwise sombre lives, Wilson is now leading a frontal attack on Hamilton's approach, claiming that the inclusive fitness theory is not as mathematically general as the standard natural selection theory, has led to no additional biological insights and should therefore be abandoned. The world cannot but sit up and take notice.
Resumo:
In social selection the phenotype of an individual depends on its own genotype as well as on the phenotypes, and so genotypes, of other individuals. This makes it impossible to associate an invariant phenotype with a genotype: the social context is crucial. Descriptions of metazoan development, which often is viewed as the acme of cooperative social behaviour, ignore or downplay this fact. The implicit justification for doing so is based on a group-selectionist point of view. Namely, embryos are clones, therefore all cells have the same evolutionary interest, and the visible differences between cells result from a common strategy. The reasoning is flawed, because phenotypic heterogeneity within groups can result from contingent choices made by cells from a flexible repertoire as in multicellular development. What makes that possible is phenotypic plasticity, namely the ability of a genotype to exhibit different phenotypes. However, co-operative social behaviour with division of labour requires that different phenotypes interact appropriately, not that they belong to the same genotype, or have overlapping genetic interests. We sketch a possible route to the evolution of social groups that involves many steps: (a) individuals that happen to be in spatial proximity benefit simply by virtue of their number; (b) traits that are already present act as preadaptations and improve the efficiency of the group; and (c) new adaptations evolve under selection in the social context-that is, via interactions between individuals-and further strengthen group behaviour. The Dictyostelid or cellular slime mould amoebae (CSMs) become multicellular in an unusual way, by the aggregation of free-living cells. In nature the resulting group can be genetically homogeneous (clonal) or heterogeneous (polyclonal); in either case its development, which displays strong cooperation between cells (to the extent of so-called altruism) is not affected. This makes the CSMs exemplars for the study of social behaviour.
Resumo:
The evolution of altruism is the central problem of the evolution of eusociality. The evolution of altruism is most likely to be understood by studying species that show altruism in spite of being capable of ''selfish'' individual reproduction. But the definition of eusociality groups together primitively eusocial species where workers retain the ability to reproduce on their own and highly eusocial species where workers have lost reproductive options. At the same time it separates the primitively eusocial species from semisocial species, species that lack life-time sterility and cooperatively breeding birds and mammals, in most of which, altruism and the associated social life are facultative. The definition of eusociality is also such that it is sometimes difficult to decide,what is eusocial and what is not. I therefore suggest that, (1) we expand the scope of eusociality to include semisocial species, primitively eusocial species, highly eusocial species as well as those cooperatively breeding birds and mammals where individuals give up substantial or all personal reproduction for aiding conspecifics, (2) there should be no requirement of overlap of generations or of life-time sterility and (3) the distinction between primitively and highly eusocial should continue, based on the presence or absence of morphological caste differentiation.
Resumo:
Polistes dominulus is one of the most common social wasps in Europe and is an invasive species in the United States. Its wide prevalence has made it one of the best-studied social wasps. In most social wasps, the female wasps live in a colony and organize themselves into a behavioral dominance hierarchy such that only the dominant alpha individual (the queen) reproduces while the rest function as apparently altruistic, sterile subordinates (workers), building the nest, foraging for food and pulp, and feeding and caring for the brood. Why should workers invest their time and energy helping to rear the queen's brood, rather than found their own nests and rear their own brood—something they are quite capable of? On page 874 of this issue, Leadbeater et al. (1) show that the subordinates indeed produce their own offspring and this raises interesting questions about the links between altruism, direct reproduction, and the evolution of social behavior.
Resumo:
The intense interest in social Hymenoptera, on account of their elaborate sociality and the paradox of altruism, has often suffered from considerable gender imbalance. This is partly due to the fact that worker behaviour and altruism are restricted to the females and partly because males often live off the nest. Yet, understanding the males, especially in the context of mating biology is essential even for understanding the evolution of sociality. Mating patterns have a direct bearing on the levels of intra-colony genetic relatedness, which in turn, along with the associated costs and benefits of worker behaviour, are central to our understanding of the evolution of sociality. Although mating takes place away from the nest in natural colonies of the primitively eusocial wasp Ropalidia marginata, mating can be observed in the laboratory if a male and a female are placed in a transparent, aerated plastic container, and both wasps are in the range of 5-20 days of age. Here, we use this setup and show that males, but not females, mate serially with multiple partners. The multiple mating behaviour of the males is not surprising because in nature males have to mate with a number of females, only a few of whom will go on to lay eggs. The reluctance of R. marginata females to mate with multiple partners is consistent with the expectation of monogamy in primitively eusocial species with totipotent females, although the apparent discrepancy with a previous work with allozyme markers in natural colonies suggesting that females may sometimes mate with two or three different males remains to be resolved.
Resumo:
Ropalidia marginata is a primitively eusocial wasp widely distributed in peninsular India. Although solitary females found a small proportion of nests, the vast majority of new nests are founded by small groups of females. In suchmultiple foundress nests, a single dominant female functions as the queen and lays eggs, while the rest function as sterile workers and care for the queen's brood. Previous attempts to understand the evolution of social behaviour and altruism in this species have employed inclusive fitness theory (kin selection) as a guiding framework. Although inclusive fitness theory is quite successful in explaining the high propensity of the wasps to found nests in groups, several features of their social organization suggest that forces other than kin selection may also have played a significant role in the evolution of this species. These features include lowering of genetic relatedness owing to polyandry and serial polygyny, nest foundation by unrelated individuals, acceptance of young non-nest-mates, a combination of well-developed nest-mate recognition and lack of intra-colony kin recognition, a combination of meek and docile queens and a decentralized self-organized work force, long reproductive queues with cryptic heir designates and conflict-free queen succession, all resulting in extreme intra-colony cooperation and inter-colony conflict.