182 resultados para Alternative Sigma-factor

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The function of a protein in a cell often involves coordinated interactions with one or several regulatory partners. It is thus imperative to characterize a protein both in isolation as well as in the context of its complex with an interacting partner. High resolution structural information determined by X-ray crystallography and Nuclear Magnetic Resonance offer the best route to characterize protein complexes. These techniques, however, require highly purified and homogenous protein samples at high concentration. This requirement often presents a major hurdle for structural studies. Here we present a strategy based on co-expression and co-purification to obtain recombinant multi-protein complexes in the quantity and concentration range that can enable hitherto intractable structural projects. The feasibility of this strategy was examined using the sigma factor/anti-sigma factor protein complexes from Mycobacterium tuberculosis. The approach was successful across a wide range of sigma factors and their cognate interacting partners. It thus appears likely that the analysis of these complexes based on variations in expression constructs and procedures for the purification and characterization of these recombinant protein samples would be widely applicable for other multi-protein systems. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative levels of different sigma factors dictate the expression profile of a bacterium. Extracytoplasmic function sigma factors synchronize the transcriptional profile with environmental conditions. The cellular concentration of free extracytoplasmic function sigma factors is regulated by the localization of this protein in a sigma/anti-sigma complex. Anti-sigma factors are multi-domain proteins with a receptor to sense environmental stimuli and a conserved anti-sigma domain (ASD) that binds a sigma factor. Here we describe the structure of Mycobacterium tuberculosis anti-sigma(D) (RsdA) in complex with the -35 promoter binding domain of sigma(D) (sigma(D)(4)). We note distinct conformational features that enable the release of sigma(D) by the selective proteolysis of the ASD in RsdA. The structural and biochemical features of the sigma(D)/RsdA complex provide a basis to reconcile diverse regulatory mechanisms that govern sigma/anti-sigma interactions despite high overall structural similarity. Multiple regulatory mechanisms embedded in an ASD scaffold thus provide an elegant route to rapidly re-engineer the expression profile of a bacterium in response to an environmental stimulus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The association of a factors with the RNA polymerase dictates the expression profile of a bacterial cell. Major changes to the transcription profile are achieved by the use of multiple sigma factors that confer distinct promoter selectivity to the holoenzyme. The cellular concentration of a sigma factor is regulated by diverse mechanisms involving transcription, translation and post-translational events. The number of sigma factors varies substantially across bacteria. The diversity in the interactions between sigma factors also vary-ranging from collaboration, competition or partial redundancy in some cellular or environmental contexts. These interactions can be rationalized by a mechanistic model referred to as the partitioning of a space model of bacterial transcription. The structural similarity between different sigma/anti-sigma complexes despite poor sequence conservation and cellular localization reveals an elegant route to incorporate diverse regulatory mechanisms within a structurally conserved scaffold. These features are described here with a focus on sigma/anti-sigma complexes from Mycobacterium tuberculosis. In particular, we discuss recent data on the conditional regulation of sigma/anti-sigma factor interactions. Specific stages of M. tuberculosis infection, such as the latent phase, as well as the remarkable adaptability of this pathogen to diverse environmental conditions can be rationalized by the synchronized action of different a factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis has multiple sigma factors which enable the bacterium to reprogram its transcriptional machinery under diverse environmental conditions. sigma(J), an extracytoplasmic function sigma factor, is upregulated in late stationary phase cultures and during human macrophage infection. sigma(J) governs the cellular response to hydrogen peroxide-mediated oxidative stress. sigma(J) differs from other canonical sigma factors owing to the presence of a SnoaL_2 domain at the C-terminus. sigma(J) crystals belonged to the tetragonal space group I422, with unit-cell parameters a = b = 133.85, c = 75.08 angstrom. Diffraction data were collected to 2.16 angstrom resolution on the BM14 beamline at the European Synchrotron Radiation Facility (ESRF).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During active growth of Escherichia coli, majority of the transcriptional activity is carried out by the housekeeping sigma factor (Sigma 70), whose association with core RNAP is generally favoured because of its higher intracellular level and higher affinity to core RNAP. In order to facilitate transcription by alternative sigma factors during nutrient starvation, the bacterial cell uses multiple strategies by which the transcriptional ability of Sigma 70 is diminished in a reversible manner. The facilitators of shifting the balance in favour of alternative sigma factors happen to be as diverse as a small molecule (p)ppGpp (represents ppGpp or pppGpp), proteins (DksA, Rsd) and a species of RNA (6S RNA). Although 6S RNA and (p)ppGpp were known in literature for a long time, their role in transcriptional switching has been understood only in recent years. With themelucidation of function of DksA, a new dimension has been added to the phenomenon of stringent response. As the final outcome of actions of (p)ppGpp, DksA, 6S RNA and Rsd is similar, there is a need to analyse hese mechanisms in a collective manner. We review the recent trends in understanding the regulation of Sigma 70 by (p)ppGpp, DksA, Rsd and 6S RNA and present a case for evolving a unified model of RNAP redistribution during starvation by modulation of Sigma 70 activity in E. coli.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, sigma(70), of E. coli. Though both factors are known to interact with the C-terminal region of sigma(70), the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to or 70 with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with sigma(70) studied by using the yeast two-hybrid system revealed that region 4 of sigma(70) is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of sigma(70) as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to sigma(70).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The host-pathogen interactions in Mycobacterium tuberculosis infection are significantly influenced by redox stimuli and alterations in the levels of secreted antigens. The extracyto-plasmic function (ECF) sigma factor sigma(K) governs the transcription of the serodominant antigens MPT70 and MPT83. The cellular levels of sigma(K) are regulated by the membrane-associated anti-sigma(K) (RskA) that localizes sigma(K) in an inactive complex. The crystal structure of M. tuberculosis sigma(K) in complex with the cytosolic domain of RskA (RskAcyto) revealed a disulfide bridge in the -35 promoter-interaction region of sigma(K). Biochemical experiments reveal that the redox potential of the disulfide-forming cysteines in sigma(K) is consistent with its role as a sensor. The disulfide bond in sigma(K) influences the stability of the sigma(K)-RskA(cyto) complex but does not interfere with sigma(K)-promoter DNA interactions. It is noted that these disulfide-forming cysteines are conserved across homologues, suggesting that this could be a general mechanism for redox-sensitive transcription regulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we have tried to emphasize the connection between mycobacterial growth and regulation of gene expression. Utilization of multiple carbon sources and diauxic growth helps bacteria to regulate gene expression at an optimum level so that the inhospitable conditions encountered during nutrient depletion can be circumvented. These aspects will be discussed with respect to mycobacterial growth in subsequent sections. Identification and characterization of genes induced under such conditions is helpful to understand the physiology of the bacterium. Although it is necessary to compare the total expression profile of proteins as they transit from vegetative growth to stationary phase, at times a lot of insights can be deciphered from the expression pattern of one or two proteins. We have compared the protein expression and sigma factor selectivity of two such proteins in M. smegmatis to understand the differential regulation of genes playing diverse function in the same species. Some newer insights on the structure and function of one of the Dps proteins are also explained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An effective transcriptional response to redox stimuli is of particular importance for Mycobacterium tuberculosis, as it adapts to the environment of host alveoli and macrophages. The M. tuberculosis a factor sigma(L) regulates the expression of genes involved in cell-wall and polyketide syntheses. sigma(L) interacts with the cytosolic anti-sigma domain of a membrane-associated protein, RslA. Here we demonstrate that RslA binds Zn2+ and can sequester sigma(L) in a reducing environment. In response to an oxidative stimulus, proximal cysteines in the CXXC motif of RslA form a disulfide bond, releasing bound Zn2+. This results in a substantial rearrangement of the sigma(L)/RslA complex, leading to an 8-fold decrease in the affinity of RslA for sigma(L). The crystal structure of the -35-element recognition domain of sigma(L), sigma(L)(4), bound to RslA reveals that RslA inactivates sigma(L) by sterically occluding promoter DNA and RNpolymerase binding sites. The crystal structure further reveals that the cysteine residues that coordinate Zn2+ in RslA are solvent exposed in the complex, thus providing a structural basis for the redox sensitivity of RslA. The biophysical parameters of sigma(L)/RslA interactions provide a template for understanding how variations in the rate of Zn2+ release and associated conformational changes could regulate the activity of a Zn2+-associated anti-sigma factor. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Mycobacterium tuberculosis transcriptional regulator Rv1364c regulates the activity of the stress response sigma factor sigma(F). This multi-domain protein has several components: a signaling PAS domain and an effector segment comprising of a phosphatase, a kinase and an anti-anti-sigma factor domain. Based on Small Angle X-ray Scattering (SAXS) data, Rv1364c was recently shown to be a homo-dimer and adopt an elongated conformation in solution. The PAS domain could not be modeled into the structural envelope due to poor sequence similarity with known PAS proteins. The crystal structure of the PAS domain described here provides a structural basis for the dimerization of Rv1364c. It thus appears likely that the PAS domain regulates the anti-sigma activity of Rv1364c by oligomerization. A structural comparison with other characterized PAS domains reveal several sequence and conformational features that could facilitate ligand binding - a feature which suggests that the function of Rv1364c could potentially be governed by specific cellular signals or metabolic cues. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacteria can utilize multiple sources of carbon for growth, and for pathogenic bacteria like Mycobacterium tuberculosis, this ability is crucial for survival within the host. In addition, phenotypic changes are seen in mycobacteria grown under different carbon sources. In this study, we use Raman spectroscopy to analyze the biochemical components present in M. smegmatis cells when grown in three differently metabolized carbon sources. Our results show that carotenoid biosynthesis is enhanced when M. smegmatis is grown in glucose compared to glycerol and acetate. We demonstrate that this difference is most likely due to transcriptional upregulation of the carotenoid biosynthesis operon (crt) mediated by higher levels of the stress-responsive sigma factor SigF. Moreover, we find that increased SigF and carotenoid levels correlate with greater resistance of glucose-grown cells to oxidative stress. Thus, we demonstrate the use of Raman spectroscopy in unraveling unknown aspects of mycobacterial physiology and describe a novel effect of carbon source variation on mycobacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When the variation of secondary compression, with log(10) t is non-linear, the quantification of secondary settlement through the coefficient of secondary compression, C-alpha epsilon, becomes difficult which frequently leads to an underestimate of the settlement, Log(10) delta - log(10) t representation of such true-compression data has the distinct advantage of exhibiting linear secondary compression behaviour over an appreciably larger time span. The slope of the secondary compression portion of the log(10) e - log(10) t curve expressed as Delta(log e)/(log t) and called the 'secondary compression factor', m, proves to be a better alternative to C-alpha epsilon and the prediction of secondary settlement is improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic assessment of the submodels of conditional moment closure (CMC) formalism for the autoignition problem is carried out using direct numerical simulation (DNS) data. An initially non-premixed, n-heptane/air system, subjected to a three-dimensional, homogeneous, isotropic, and decaying turbulence, is considered. Two kinetic schemes, (1) a one-step and (2) a reduced four-step reaction mechanism, are considered for chemistry An alternative formulation is developed for closure of the mean chemical source term , based on the condition that the instantaneous fluctuation of excess temperature is small. With this model, it is shown that the CMC equations describe the autoignition process all the way up to near the equilibrium limit. The effect of second-order terms (namely, conditional variance of temperature excess sigma(2) and conditional correlations of species q(ij)) in modeling is examined. Comparison with DNS data shows that sigma(2) has little effect on the predicted conditional mean temperature evolution, if the average conditional scalar dissipation rate is properly modeled. Using DNS data, a correction factor is introduced in the modeling of nonlinear terms to include the effect of species fluctuations. Computations including such a correction factor show that the species conditional correlations q(ij) have little effect on model predictions with a one-step reaction, but those q(ij) involving intermediate species are found to be crucial when four-step reduced kinetics is considered. The "most reactive mixture fraction" is found to vary with time when a four-step kinetics is considered. First-order CMC results are found to be qualitatively wrong if the conditional mean scalar dissipation rate is not modeled properly. The autoignition delay time predicted by the CMC model compares excellently with DNS results and shows a trend similar to experimental data over a range of initial temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The short-lived radionuclide Ca-41 plays an important role in constraining the immediate astrophysical environment and the formation timescale of the nascent solar system due to its extremely short half-life (0.1 Myr). Nearly 20 years ago, the initial ratio of Ca-41/Ca-40 in the solar system was determined to be (1.41 +/- 0.14) x 10(-8), primarily based on two Ca-Al-rich Inclusions (CAIs) from the CV chondrite Efremovka. With an advanced analytical technique for isotopic measurements, we reanalyzed the potassium isotopic compositions of the two Efremovka CAIs and inferred the initial ratios of Ca-41/Ca-40 to be (2.6 +/- 0.9) x 10(-9) and (1.4 +/- 0.6) x 10(-9) (2 sigma), a factor of 7-10 lower than the previously inferred value. Considering possible thermal processing that led to lower Al-26/Al-27 ratios in the two CAIs, we propose that the true solar system initial value of Ca-41/Ca-40 should have been similar to 4.2 x 10(-9). Synchronicity could have existed between Al-26 and Ca-41, indicating a uniform distribution of the two radionuclides at the time of CAI formation. The new initial Ca-41 abundance is 4-16 times lower than the calculated value for steady-state galactic nucleosynthesis. Therefore, Ca-41 could have originated as part of molecular cloud materials with a free decay time of 0.2-0.4 Myr. Alternative possibilities, such as a last-minute input from a stellar source and early solar system irradiation, could not be definitively ruled out. This underscores the need for more data from diverse CAIs to determine the true astrophysical origin of Ca-41.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Translational regulation of the p53 mRNA can determine the ratio between p53 and its N-terminal truncated isoforms and therefore has a significant role in determining p53-regulated signaling pathways. Although its importance in cell fate decisions has been demonstrated repeatedly, little is known about the regulatory mechanisms that determine this ratio. Two internal ribosome entry sites (IRESs) residing within the 5'UTR and the coding sequence of p53 mRNA drive the translation of full-length p53 and Delta 40p53 isoform, respectively. Here, we report that DAP5, a translation initiation factor shown to positively regulate the translation of various IRES containing mRNAs, promotes IRES-driven translation of p53 mRNA. Upon DAP5 depletion, p53 and Delta 40p53 protein levels were decreased, with a greater effect on the N-terminal truncated isoform. Functional analysis using bicistronic vectors driving the expression of a reporter gene from each of these two IRESs indicated that DAP5 preferentially promotes translation from the second IRES residing in the coding sequence. Furthermore, p53 mRNA expressed from a plasmid carrying this second IRES was selectively shifted to lighter polysomes upon DAP5 knockdown. Consequently, Delta 40p53 protein levels and the subsequent transcriptional activation of the 14-3-3 sigma gene, a known target of Delta 40p53, were strongly reduced. In addition, we show here that DAP5 interacts with p53 IRES elements in in vitro and in vivo binding studies, proving for the first time that DAP5 directly binds a target mRNA. Thus, through its ability to regulate IRES-dependent translation of the p53 mRNA, DAP5 may control the ratio between different p53 isoforms encoded by a single mRNA.