226 resultados para Alternate routes

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large part of the rural people of developing countries use traditional biomass stoves to meet their cooking and heating energy demands. These stoves possess very low thermal efficiency; besides, most of them cannot handle agricultural wastes. Thus, there is a need to develop an alternate cooking contrivance which is simple, efficient and can handle a range of biomass including agricultural wastes. In this reported work, a highly densified solid fuel block using a range of low cost agro residues has been developed to meet the cooking and heating needs. A strategy was adopted to determine the best suitable raw materials, which was optimized in terms of cost and performance. Several experiments were conducted using solid fuel block which was manufactured using various raw materials in different proportions; it was found that fuel block composed of 40% biomass, 40% charcoal powder, 15% binder and 5% oxidizer fulfilled the requirement. Based on this finding, fuel blocks of two different configurations viz. cylindrical shape with single and multi-holes (3, 6, 9 and 13) were constructed and its performance was evaluated. For instance, the 13 hole solid fuel block met the requirement of domestic cooking; the mean thermal power was 1.6 kWth with a burn time of 1.5 h. Furthermore, the maximum thermal efficiency recorded for this particular design was 58%. Whereas, the power level of single hole solid fuel block was found to be lower but adequate for barbecue cooking application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LiNi1/3Mn1/3Co1/3O2, a high voltage and high-capacity cathode material for Li-ion batteries, has been synthesized by three different rapid synthetic methods. viz. nitrate-melt decomposition, combustion and sol-gel methods. The first two methods are ultra rapid and a time period as small as 15 min is sufficient to prepare nano-crystalline LiNi1/3Mn1/3Co1/3O2. The processing parameters in obtaining the best performing materials are optimized for each process and their electrochemical performance is evaluated in Li-ion cells. The combustion-derived LiNi1/3Mn1/3Co1/3O2 sample exhibits large extent of cation mixing (10%) while the other two methods yield LiNi1/3Mn1/3Co1/3O2 with cation mixing <5%. LiNi1/3Mn1/3Co1/3O2 prepared by nitrate-melt decomposition method exhibits superior performance as Li-ion battery cathode material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shikimic acid, more commonly known by its anionic form, shikimate, is an important intermediate compound of the ‘shikimate pathway’ in plants and microorganisms1. It is the principal precursor for the synthesis of aromatic amino acids, phenylalanine, tryptophan and tyrosine and other compounds such as alkaloids, phenolics and phenyl propanoids2. It is used extensively as a chiral building block for the synthesis of a number of compounds in both pharmaceutical and cosmetic industries3. In the recent past, the focus on shikimic acid has increased since it is the key precursor for the synthesis of Tamiflu, the only drug against avian flu caused by the H5N1 virus4,5. Shikimic acid is converted to a diethyl ketal intermediate, which is then reduced in two steps to an epoxide that is finally transformed to Tamiflu6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new stress-strain law, which is a three parameter representation of stress in terms of strain has been proposed for the matrix displacement analysis of structures made of non-hookean materials. This formula has been utilized to study three typical problems. These studies brought out the effectiveness and suitability of this law for matrix displacement analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduction of trans-1-oxo-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XI) by lithium tri-t-butoxyaluminohydride gave trans-1β-hydroxy-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XII) which on lithium-liquid ammonia reduction gave trans-anti-1β-hydroxy-7-oxo-Δ8(14)-dodecahydrophenanthrene (XIII). Reduction of cis-1-oxo-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XV) by sodium borohydride gave cis-1α-hydroxy-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XVI) which on lithium-liquid ammonia reduction gave cis-syn-1α-hydroxy-7-oxo-Δ8(14)-dodecahydrophenanthrene (XVII).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here a synthetic route for high-quality Mn-doped ZnSe nanocrystals using selenourea as a selenium source, avoiding the more conventional route-using tributylphosphine (TBP) that restricts the growth of spherical ZnSe nanocrystals below 5 nm in size, besides being highly toxic and pyrophoric. Spherical ZnSe nanocrystals with unprecendented sizes (up to 12 nm) are synthesized, the large size of the host helps to keep dopant ions well inside the nanocrystal leading to intense and stable dopant emission. Mn-doped ZnSe nanocrystals with more than 50% quantum yield (QY) are synthesized in this method and found to be stable both in aqueous and nonaqueous dispersions for months.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe three different families of metal oxides, viz., (i) protonated layered perovskites, (ii) framework phosphates of NASICON and KTiOPO4 (KTP) structures and (iii) layered and three-dimensional oxides in the H-V-W-O system, synthesized by 'soft-chemical' routes involving respectively ion-exchange, redox deinteracalation and acid-leaching from appropriate parent oxides. Oxides of the first family, HyA2B3O10(A = La/Ca; B = Ti/Nb), exhibit variable Bronsted acidity and intercalation behaviour that depend on the interlayer structure. V2(PO4)3 prepared by oxidative deintercalation from Na3V2(PO4)3 is a new host material exhibiting reductive insertion of lithium/hydrogen, while K0.5Nb0.5 M0.5OPO4(M = Ti, V) are novel KTP-like materials exhibiting second harmonic generation of 1064 nm radiation. HxVxW1-xO3 for x = 0.125 and 0.33 possessing alpha-MoO3 and hexagonal WO3 structures, prepared by acid-leaching of LiVWO6, represent functionalized oxide materials exhibiting redox and acid-base intercalation reactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the parallel implementation of the solution of a set of linear equations using the Alternative Quadrant Interlocking Factorisation Methods (AQIF), on a star topology. Both the AQIF and LU decomposition methods are mapped onto star topology on an IBM SP2 system, with MPI as the internode communicator. Performance parameters such as speedup, efficiency have been obtained through experimental and theoretical means. The studies demonstrate (i) a mismatch of 15% between the theoretical and experimental results, (ii) scalability of the AQIF algorithm, and (iii) faster executing AQIF algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review our recent contributions to the use of solvothermal methods for the preparation of different oxide and chalcogenide nanoparticles. We have prepared sub 10-nm,gamma-Fe2O3 ZnFe2O4, and CoFe2O4 particles by the decomposition of the corresponding cupferron complexes in the presence of n-octylamine or n-dodecylamine in solvothermal toluene. Similarly, dodecanethiol-capped chalcogenide nanoparticles of CdSe have been prepared by reacting cadmium stearates with H2Se under solvothermal conditions. The H2Se is generated in situ by the reduction of Se by tetralin. Using this latter technique, we have also been able to prepare PbSe and PbI2 in toluene under solvothermal conditions, albeit in bulk (rather than nanocrystalline) form. In the preparation of PbI2, HI is prepared by the in situ reduction of I-2 by tetralin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several novel oxides have been prepared by the decomposition of carbonate precursors of calcite structure of the general formulas Mn1−xMxCO3 (M = Mg,Co,Cd), Ca1−xMx'CO3, and Ca1−x−yMxMy”CO3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel, volatile, stable, oxo-β-ketoesterate complexes of titanium, whose synthesis requires only an inert atmosphere, as opposed to a glove box, have been developed. Using one of the complexes as the precursor, thin films of TiO2 have been deposited on glass substrates by metalorganic chemical vapor deposition (MOCVD) at temperatures ranging from 400°C to 525°C and characterized by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. All the films grown in this temperature range are very smooth; those grown above 480°C consist of nearly monodisperse, nanocrystals of the anatase phase. Optical studies show the bandgaps in the range 3.4–3.7 eV for films grown at different temperatures. Thin films of anatase TiO2 have also been grown by spin-coating technique using another ketoesterate complex of titanium, demonstrating that the newly developed complexes can be successfully used for thin film growth by various chemical routes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid solidification, mechanical alloying and devitrificaiton of precursor metallic glasses are all possible routes for the synthesis of nanocrystals and nanocomposites, though their efficacy is system dependent. In a comprehensive study of alloys across the Ti-Ni phase diagram, nanocrystals of Ti and Ni and nanocomposites of alpha -Ti and Ti sub 2 Ni, Ti sub 2 Ni and TiNi and beta -Ti and glass have been produced. By the addition of Al, devitrification of metallic glasses created by mechanical alloying led to nanocrystalline intermetallic compounds. The evolution of these nanocrystalline microstructures has been rationalized on the basis of thermodynamic and kinetic considerations involving the metastable phase diagram for this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we study thermodynamic properties of an important class of single-chain magnets (SCMs), where alternate units are isotropic and anisotropic with anisotropy axes being non-collinear. This class of SCMs shows slow relaxation at low temperatures which results from the interplay of two different relaxation mechanisms, namely dynamical and thermal. Here anisotropy is assumed to be large and negative, as a result, anisotropic units behave like canted spins at low temperatures; but even then simple Ising-type model does not capture the essential physics of the system due to quantum mechanical nature of the isotropic units. We here show how statistical behavior of this class of SCMs can be studied using a transfer matrix (TM) method. We also, for the first time, discuss in detail how weak inter-chain interactions can be treated by a TM method. The finite size effect is also discussed which becomes important for low temperature dynamics. At the end of this paper, we apply this technique to study a real helical chain magnet.