8 resultados para Alkohol Schläfrigkeit Müdigkeit Pupillographie PST
em Indian Institute of Science - Bangalore - Índia
Resumo:
Abstract is not available.
Resumo:
A stretch of 71 nucleotides in a 1.2 kilobase pair Pst I fragment of rice DNA was identified as tRNA~ gene by hybridization and nucleotide sequence analyses. The hybridization of genomic DNA with the tRNA gene showed that there are about 10 glycine tRNA genes per diploid rice genome. The 3' and 5' internal control regions, where RNA polymerase III and transcription factors bind, were found to be present in the coding sequence. The gene was transcribed into a 4S product in an yeast cell-free extract. The substitution of 5' internal control region with analogous sequences from either M13mpl9 or M13mpl8 DNA did not affect the transcription of the gene in vitro. The changes in three highly conserved nucleotides in the consensus 5' internal control region (RGYNNARYGG; R = purine, Y = pyrimidine, N = any nucleotide) did not affect transcription showing that these nucleotides are not essential for promotion of transcription. There were two 16 base pair repeats, 'TGTTTGTTTCAGCTTA' at - 130 and - 375 positions upstream from the start of the gene. Deletion of 5' flanking sequences including the 16 base pair repeat at - 375 showed increased transcription indicating that these sequences negatively modulate the expression of the gene.
Resumo:
We have identified a novel gene, trishanku (triA), by random insertional mutagenesis of Dictyostelium discoideum. TriA is a Broad complex Tramtrack bric-a-brac domain-containing protein that is expressed strongly during the late G2 phase of cell cycle and in presumptive spore (prespore (psp)) cells. Disrupting triA destabilizes cell fate and reduces aggregate size; the fruiting body has a thick stalk, a lowered spore: stalk ratio, a sub-terminal spore mass and small, rounded spores. These changes revert when the wild-type triA gene is re-expressed under a constitutive or a psp-specific promoter. By using short- and long-lived reporter proteins, we show that in triA(-) slugs the prestalk (pst)/psp proportion is normal, but that there is inappropriate transdifferentiation between the two cell types. During culmination, regardless of their current fate, all cells with a history of pst gene expression contribute to the stalk, which could account for the altered cell-type proportion in the mutant.
Synthesis, characterization, and thermal degradation studies on group VIA derived weak-link polymers
Resumo:
Polymers containing group VIA derived weak links, viz. poly(styrene disulfide) (PSD), poly- (styrene tetrasulfide) (PST), and poly(styrene diselenide) (PSDSE), have been synthesized. The polymers PSD and PST were characterized by NMR, IR, UV, TGA, and fast atom bombardment m w spectrometric (FABMS) techniques. The presence of different configurational sequences in PSD and PST were identified by *3C NMR spectroscopy. PSDSE, being insoluble in common organic solvents, was characterized using solid-state lac NMR (CP-MAS) spectroscopy. Thermal degradation of polymers under direct pyrolysis-mass spectrometric (DP-MS) conditions revealed that all the polymers undergo degradation through the weaklink scission. A comparative study of the pyrolysis products of these polymers with that of poly(styrene peroxide) (PSP) revealed a smooth transformation down the group with no monomer (styrene or oxygen) formation in PSP to only styrene and selenium metal in PSDSE. This trend of group VIA is explained from the energetics of the C-X bond (X = 0, S, and Se) which also seems to be important in addition to the weak X-X bond cleavage. In PSP and PSD, the behavior is also explained from the energetics of the alkoxy and thiyl radicals. The unique exothermic degradation in PSP compared to endothermic degradation in PSD and PSDSE is explained from the nature of the producta of degradation.
Resumo:
Vaccines against Neisseria meningitidis group C are based on its alpha-2,9-linked polysialic acid capsular polysaccharide. This polysialic acid expressed on the surface of N. meningitidis and in the absence of specific antibody serves to evade host defense mechanisms. The polysialyltransferase (PST) that forms the group C polysialic acid (NmC PST) is located in the cytoplasmic membrane. Until recently, detailed characterization of bacterial polysialyltransferases has been hampered by a lack of availability of soluble enzyme preparations. We have constructed chimeras of the group C polysialyltransferase that catalyzes the formation alpha-2,9-polysialic acid as a soluble enzyme. We used site-directed mutagenesis to determine the region of the enzyme necessary for synthesis of the alpha-2,9 linkage. A chimera of NmB and NmC PSTs containing only amino acids 1 to 107 of the NmB polysialyltransferase catalyzed the synthesis of alpha-2,8-polysialic acid. The NmC polysialyltransferase requires an exogenous acceptor for catalytic activity. While it requires a minimum of a disialylated oligosaccharide to catalyze transfer, it can form high-molecular-weight alpha-2,9-polysialic acid in a nonprocessive fashion when initiated with an alpha-2,8-polysialic acid acceptor. De novo synthesis in vivo requires an endogenous acceptor. We attempted to reconstitute de novo activity of the soluble group C polysialyltransferase with membrane components. We found that an acapsular mutant with a defect in the polysialyltransferase produces outer membrane vesicles containing an acceptor for the alpha-2,9-polysialyltransferase. This acceptor is an amphipathic molecule and can be elongated to produce polysialic acid that is reactive with group C-specific antibody.
Resumo:
The thermal degradation products of two sulfur polymers, poly(styrenedisulfide) (PSD) and poly(styrenetetrasulfide) (PST), were investigated in parallel by direct pyrolysis-mass spectrometry (DPMS) and by flash pyrolysis-GC/MS (Py-GC/MS). The time-scale of the two pyrolysis techniques is quite different, and therefore they were able to detect significantly different products in the pyrolysis of PSD and PST because of the thermal lability of sulfur-containing compounds. However, the results obtained are not contradictory, and satisfactory mechanisms for the thermal degradation of PSD and PST have been derived from the overall evidence available. Pyrolysis compounds containing sulfur, styrene, and a number of cyclic styrene sulfides and diphenyldithianes have been observed by DPMS. However, in flash pyrolysis-GC/MS, styrene, sulfur, only one cyclic styrene sulfide, and two isomers of diphenylthiophene have been detected. These thiophene derivatives were indeed absent among the compounds obtained by DPMS because they were the terminal (most thermally stable) species arising from further decomposition of the cyclic styrene sulfides formed in the primary thermal degradation processes of PSD and PST.
Chemical Degradation of Poly(styrene disulfide) and Poly(styrene tetrasulfide) by Triphenylphosphine
Resumo:
The chemical degradation of polysulfide polymers, viz., poly(styrene disulfide), PSD, and poly(styrene tetrasulfide), PST, has been achieved using triphenylphosphine, TPP. The reaction was monitored using P-31 NMR spectroscopy. The solubility analysis of the reaction residues reveals that while PSD degrades completely, PST on the other hand, undergoes complete degradation only when the concentration of TPP is increased. Moreover, the reaction of PST with TPP occurs at room temperature whereas PSD requires a higher temperature. The reaction products were analyzed using the direct pyrolysis mass spectrometric (DP-MS) technique, and their formation has been explained through an ionic mechanism.
Resumo:
The thermal degradation of poly(methyl methacrylate) (PMMA) in the presence of polysulfide polymers, namely, poly( styrene disulfide) (PSD) and poly(styrene tetrasulfide) (PST) was studied using thermogravimetry (TG) and direct pyrolysis-mass spectrometric (DP-MS) analysis. Both PSD and PST were found to stabilizethe PMMA degradation, which was explained by both radical recombination and a chain-transfer mechanism. (C) 1997 John Wiley & Sons, Inc.