97 resultados para Algebraic and analytic reversibility
em Indian Institute of Science - Bangalore - Índia
Resumo:
We show that the algebraic intersection number of Scott and Swarup for splittings of free groups Coincides With the geometric intersection number for the sphere complex of the connected sum of copies of S-2 x S-1. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We examine the large-order behavior of a recently proposed renormalization-group-improved expansion of the Adler function in perturbative QCD, which sums in an analytically closed form the leading logarithms accessible from renormalization-group invariance. The expansion is first written as an effective series in powers of the one-loop coupling, and its leading singularities in the Borel plane are shown to be identical to those of the standard ``contour-improved'' expansion. Applying the technique of conformal mappings for the analytic continuation in the Borel plane, we define a class of improved expansions, which implement both the renormalization-group invariance and the knowledge about the large-order behavior of the series. Detailed numerical studies of specific models for the Adler function indicate that the new expansions have remarkable convergence properties up to high orders. Using these expansions for the determination of the strong coupling from the hadronic width of the tau lepton we obtain, with a conservative estimate of the uncertainty due to the nonperturbative corrections, alpha(s)(M-tau(2)) = 0.3189(-0.0151)(+0.0173), which translates to alpha(s)(M-Z(2)) = 0.1184(-0.0018)(+0.0021). DOI: 10.1103/PhysRevD.87.014008
Resumo:
Groundwater management involves conflicting objectives as maximization of discharge contradicts the criteria of minimum pumping cost and minimum piping cost. In addition, available data contains uncertainties such as market fluctuations, variations in water levels of wells and variations of ground water policies. A fuzzy model is to be evolved to tackle the uncertainties, and a multiobjective optimization is to be conducted to simultaneously satisfy the contradicting objectives. Towards this end, a multiobjective fuzzy optimization model is evolved. To get at the upper and lower bounds of the individual objectives, particle Swarm optimization (PSO) is adopted. The analytic element method (AEM) is employed to obtain the operating potentio metric head. In this study, a multiobjective fuzzy optimization model considering three conflicting objectives is developed using PSO and AEM methods for obtaining a sustainable groundwater management policy. The developed model is applied to a case study, and it is demonstrated that the compromise solution satisfies all the objectives with adequate levels of satisfaction. Sensitivity analysis is carried out by varying the parameters, and it is shown that the effect of any such variation is quite significant. Copyright (c) 2015 John Wiley & Sons, Ltd.
Resumo:
The electrochemical profiles of exfoliated graphite electrodes (EG) and glassy carbon electrodes (GCE) were recorded using cyclic voltammetry and square wave voltammetry in the presence of various supporting electrolytes and Fe(CN)(6)](3-/4-), Ru(NH3)(6)](2+/3+), ferrocene redox probes. In the supporting electrolytes (KCl, H2SO4, NaOH, tetrabutylammoniumtetraflouroborate, phosphate buffers), the potential windows of EG were found in some cases to be about 200 mV larger than that of GCE. The electroactive surface area of EG was estimated to be 19.5 % larger than the GCE which resulted in higher peak currents on the EG electrode. Furthermore, EG was modified with various nanomaterials such as poly (propylene imine) dendrimer, gold nanoparticles, and dendrimer-gold nanoparticles composite. The morphologies of the modified electrodes were studied using scanning electron microscopy and their electrochemical reactivities in the three redox probes were investigated. The current and the reversibility of redox probes were enhanced with the presence of modifiers in different degrees with dendrimer and gold nanoparticles having a favorable edge.
Resumo:
Viral capsids derived from an icosahedral plant virus widely used in physical and nanotechnological investigations were fully dissociated into dimers by a rapid change of pH. The process was probed in vitro at high spatiotemporal resolution by time-resolved small-angle X-ray scattering using a high brilliance synchrotron source. A powerful custom-made global fitting algorithm allowed us to reconstruct the most likely pathway parametrized by a set of stoichiometric coefficients and to determine the shape of two successive intermediates by ab initio calculations. None of these two unexpected intermediates was previously identified in self-assembly experiments, which suggests that the disassembly pathway is not a mirror image of the assembly pathway. These findings shed new light on the mechanisms and the reversibility of the assembly/disassembly of natural and synthetic virus-based systems. They also demonstrate that both the structure and dynamics of an increasing number of intermediate species become accessible to experiments.
Resumo:
Kinetic studies of macromolecular ligand-ligate interaction have generated ample interest since the advent of plasmon resonance based instruments like BIAcore. Most of the studies reported in literature assume a simple 1 : 1 Langmuir binding and complete reversibility of the system. However we observed that in a high affinity antigen-antibody system [human chorionic gonadotropin-monoclonal antibody (hCG-mAb)] dissociation is insignificant and the sensogram data cannot be used to measure the equilibrium and kinetic parameters. At low concentrations of mAb the complete sensogram could be fitted to a single exponential. Interestingly we found that at higher mAb concentrations, the binding data did not conform to a simple bimolecular model. Instead, the data fitted a two-step model, which may be because of surface heterogeneity of affinity sites. In this paper, we report on the global fit of the sensograms. We have developed a method by which a single two-minute sensogram can be used in high affinity systems to measure the association rate constant of the reaction and the functional capacity of the ligand (hCG) immobilized on the chip. We provide a rational explanation for the discrepancies generally observed in most of the BIAcore sensograms
Resumo:
We report numerical and analytic results for the spatial survival probability for fluctuating one-dimensional interfaces with Edwards-Wilkinson or Kardar-Parisi-Zhang dynamics in the steady state. Our numerical results are obtained from analysis of steady-state profiles generated by integrating a spatially discretized form of the Edwards-Wilkinson equation to long times. We show that the survival probability exhibits scaling behavior in its dependence on the system size and the "sampling interval" used in the measurement for both "steady-state" and "finite" initial conditions. Analytic results for the scaling functions are obtained from a path-integral treatment of a formulation of the problem in terms of one-dimensional Brownian motion. A "deterministic approximation" is used to obtain closed-form expressions for survival probabilities from the formally exact analytic treatment. The resulting approximate analytic results provide a fairly good description of the numerical data.
Resumo:
Be the strong coupling constant alpha(s) from the tau hadronn width using a renormalization group summed (RGS) expansion of the QCD Adler lunction. The main theoretical uncertainty in the extraction of as is due to the manner in which renormalization group invariance is implemented, and the as yet uncalculated higher order terms in the QCD perturbative series. We show that new expansion exhibits good renormalization group improvement and the behavior of the series is similar to that of the standard RGS expansion. The value of the strong coupling in (MS) over bar scheme obtained with the RCS expansion is alpha(s) (M-tau(2)) = 0.338 +/- 0.010. The convergence properties of the new expansion can be improved by Bond transformation and analytic continuation in t he Bond plane. This is discussed elsewhere in these issues.
Resumo:
Infinite arrays of coupled two-state stochastic oscillators exhibit well-defined steady states. We study the fluctuations that occur when the number N of oscillators in the array is finite. We choose a particular form of global coupling that in the infinite array leads to a pitchfork bifurcation from a monostable to a bistable steady state, the latter with two equally probable stationary states. The control parameter for this bifurcation is the coupling strength. In finite arrays these states become metastable: The fluctuations lead to distributions around the most probable states, with one maximum in the monostable regime and two maxima in the bistable regime. In the latter regime, the fluctuations lead to transitions between the two peak regions of the distribution. Also, we find that the fluctuations break the symmetry in the bimodal regime, that is, one metastable state becomes more probable than the other, increasingly so with increasing array size. To arrive at these results, we start from microscopic dynamical evolution equations from which we derive a Langevin equation that exhibits an interesting multiplicative noise structure. We also present a master equation description of the dynamics. Both of these equations lead to the same Fokker-Planck equation, the master equation via a 1/N expansion and the Langevin equation via standard methods of Ito calculus for multiplicative noise. From the Fokker-Planck equation we obtain an effective potential that reflects the transition from the monomodal to the bimodal distribution as a function of a control parameter. We present a variety of numerical and analytic results that illustrate the strong effects of the fluctuations. We also show that the limits N -> infinity and t -> infinity(t is the time) do not commute. In fact, the two orders of implementation lead to drastically different results.
Resumo:
Computation of the dependency basis is the fundamental step in solving the membership problem for functional dependencies (FDs) and multivalued dependencies (MVDs) in relational database theory. We examine this problem from an algebraic perspective. We introduce the notion of the inference basis of a set M of MVDs and show that it contains the maximum information about the logical consequences of M. We propose the notion of a dependency-lattice and develop an algebraic characterization of inference basis using simple notions from lattice theory. We also establish several interesting properties of dependency-lattices related to the implication problem. Founded on our characterization, we synthesize efficient algorithms for (a): computing the inference basis of a given set M of MVDs; (b): computing the dependency basis of a given attribute set w.r.t. M; and (c): solving the membership problem for MVDs. We also show that our results naturally extend to incorporate FDs also in a way that enables the solution of the membership problem for both FDs and MVDs put together. We finally show that our algorithms are more efficient than existing ones, when used to solve what we term the ‘generalized membership problem’.
Resumo:
In an earlier paper [1], it has been shown that velocity ratio, defined with reference to the analogous circuit, is a basic parameter in the complete analysis of a linear one-dimensional dynamical system. In this paper it is shown that the terms constituting velocity ratio can be readily determined by means of an algebraic algorithm developed from a heuristic study of the process of transfer matrix multiplication. The algorithm permits the set of most significant terms at a particular frequency of interest to be identified from a knowledge of the relative magnitudes of the impedances of the constituent elements of a proposed configuration. This feature makes the algorithm a potential tool in a first approach to a rational design of a complex dynamical filter. This algorithm is particularly suited for the desk analysis of a medium size system with lumped as well as distributed elements.
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions. We use the force and moment transformation matrices separately, and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation is applied to a class of Stewart platform manipulator, and a multi-parameter family of isotropic manipulators is identified analytically. We show that it is impossible to obtain a spatially isotropic configuration within this family. We also compute the isotropic configurations of an existing manipulator and demonstrate a procedure for designing the manipulator for isotropy at a given configuration. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We offer a technique, motivated by feedback control and specifically sliding mode control, for the simulation of differential-algebraic equations (DAEs) that describe common engineering systems such as constrained multibody mechanical structures and electric networks. Our algorithm exploits the basic results from sliding mode control theory to establish a simulation environment that then requires only the most primitive of numerical solvers. We circumvent the most important requisite for the conventionalsimulation of DAEs: the calculation of a set of consistent initial conditions. Our algorithm, which relies on the enforcement and occurrence of sliding mode, will ensure that the algebraic equation is satisfied by the dynamic system even for inconsistent initial conditions and for all time thereafter. [DOI:10.1115/1.4001904]
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions. We use the force and moment transformation matrices separately, and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation is applied to a class of Stewart platform manipulator, and a multi-parameter family of isotropic manipulators is identified analytically. We show that it is impossible to obtain a spatially isotropic configuration within this family. We also compute the isotropic configurations of an existing manipulator and demonstrate a procedure for designing the manipulator for isotropy at a given configuration.
Resumo:
In this paper we study representation of KL-divergence minimization, in the cases where integer sufficient statistics exists, using tools from polynomial algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. In particular, we also study the case of Kullback-Csiszar iteration scheme. We present implicit descriptions of these models and show that implicitization preserves specialization of prior distribution. This result leads us to a Grobner bases method to compute an implicit representation of minimum KL-divergence models.