15 resultados para Alexander VI, Pope, 1431-1503.
em Indian Institute of Science - Bangalore - Índia
Resumo:
The electronic structure of group II-VI semiconductors in the stable wurtzite form is analyzed using state-of-the-art ab initio approaches to extract a simple and chemically transparent tight-binding model. This model can be used to understand the variation in the bandgap with size, for nanoclusters of these compounds. Results complement similar information already available for same systems in the zinc blende structure. A comparison with all available experimental data on quantum size effects in group II-VI semiconductor nanoclusters establishes a remarkable agreement between theory and experiment in both structure types, thereby verifying the predictive ability of our approach. The significant dependence of the quantum size effect on the structure type suggests that the experimental bandgap change at a given size compared to the bulk bandgap, may be used to indicate the structural form of the nanoclusters, particularly in the small size limit, where broadening of diffraction features often make it difficult to unambiguously determine the structure.
Resumo:
Conformational energy calculations were carried out on penicillin α-and Β-sulfoxides and δ2- and δ3-cephalosporins, in order to identify the structural features governing their biological activity. Results on penicillin Β-sulfoxide indicated that in its favoured conformation, the orientation of the aminoacyl group was different from the one required for biological activity. Penicillin α sulfoxide, like penicillin sulfide, favoured two conformations of nearly equal energies, but separated by a much higher energy barrier. The reduced activity of the sulfoxides despite the nonplanarity of their lactam peptide indicated that the orientations of the aminoacyl and carboxyl groups might also govern biological activity. δ3-cephalosporins favoured two conformations of nearly equal energies, whereas δ2-cephalosporins favoured only one conformation. The lactam peptide was moderately nonplanÄr in the former, but nearly planar in the latter. The differences in the.preferred orientations of the carboxyl group between penicillins and cephalosporins were correlated with the resistance of cephalosporins to penicillinases.
Resumo:
Abstract is not available.
Resumo:
Antipyrine complexes of TiO2+, ZrO2+, Zr4+, Th4+ and UO2+2 perchlorates with molecular formulae TiO(Apy)4(ClO4)2, ZrO(Apy)3(ClO4)2, Zr(Apy)6(ClO4)4, Th(Apy)7(ClO4)4 and UO2(Apy)5(ClO4)2 have been prepared and characterized. The complexes are stable in air at room temperature and decompose exothermally at ~3OO °C. The i.r. study indicates the bonding of the antipyrine to the metal ion through its carbonyl oxygen. The nature of the bonding of the perchlorate and the stereochemistry of the complexes are discussed in the light of infrared spectra, conductivity in solvents of different polarity, and molecular weight measurements. From the UO2+2 group frequencies, the force constant K and rU-o are found to be 6.29 × 105 dynes/ cm-1 and 1.74 Å, respectively.
Resumo:
The electrical resistivity of bulk GexTe100-x glasses has been measured as a function of temperature and pressure. Under high pressure, all the glasses were found to undergo sharp discontinuous transitions from glassy semiconductors to crystalline metal. Several of the observed properties such as the transition pressure, conductivity activation energy and pre-exponential factor, exhibit anomalous trends at a composition x = 20. These results suggest that the x = 20 composition in the Ge-Te system should possess salient structural features. A model based on the unusual stability of structural units is proposed for explaining the anomaly at 20 at.% Ge concentration.
Resumo:
It has been possible to identify two critical compositions in the IV-VI chalcogenide glassy system GexSe100-x by the anomalous variations of the high-pressure electrical resistivity behavior. The first critical composition, the chemical threshold, refers to the stoichiometric composition. The second critical composition, identified recently as the mechanical percolation threshold, is connected with the structural rigidity of the material.
Resumo:
The reactions of (amino)spirocyclotriphosphazenes, N3P3(NMe2)4(NHCH2CH2NH) (1) and N3P3(NMe2)4(NHCH2CH2CH2NH) (2) with molybdenum- and tungsten-hexacarbonyls give complexes of the type [M(CO)4(L)] (L = 1 or 2) in which the phosphazenes act as bidentate chelating ligands via one of the phosphazene ring nitrogen atoms and one of the nitrogen atoms of the diaminoalkane moiety.
Resumo:
Polycrystalline samples of oxides of the general formula LiM(V)M(VI)O(6) (M(V) = Nb, Ta; M(VI) = Mo, W), crystallizing in a non-centrosymmetric (space group P (4) over bar 2(1)m) trirutile structure, exhibit second harmonic generation (SHG) of 1064 nm radiation with efficiencies 15-45 times that of alpha-quartz; interestingly, the SHG response is retained by the protonated derivatives HM(V)M(VI)O(6) . xH(2)O, and their n-alkylamine intercalates as well.
Resumo:
A differential pulse polarographic (DPP) method based on the adsorption catalytic current in a medium containing chlorate and 8-hydroxyquinoline (oxine) is suggested for the determination of molybdenum(VI). Experimental conditions such as pH and the composition of supporting electrolyte have been optimized to get a linear calibration graph at trace levels of Mo(VI). The sensitivity for molybdenum can be considerably enhanced by this method. The influence of possible interferences on the catalytic current has been investigated. The sensitivity of the method is compared with those obtained for other DPP methods for molybdenum. A detection limit of 1.0 x 10(-8) mol/L has been found.
Resumo:
In this study we present a colorimetric detection method for Cr (VI) in aqueous solution based on as synthesized silver nanoparticles (Ag NPs) without surface functionalization. The method principle involves reduction of Cr (VI) to Cr (III) by excess reductant present in as synthesized Ag NP dispersion, and subsequent aggregation of Ag NPs by Cr (III) leading to red-shift of the surface plasmon resonance (SPR) peak. The UV-vis absorption spectra. Zeta potentials, dynamic light scattering measurements, and scanning electron microscopy (SEM) confirmed the aggregation of the Ag NPs. Under the optimized conditions, a good linear relationship (correlation coefficient r=0.981) was obtained between the ratio of the absorbance at 550 nm to that at 390 nm (A(550/390)) and the concentration of Cr (VI) over the range of 10(-3)-10(-9) M 50 mg/L to 50 ng/L]. The reported probe has a limit of detection down to 1 nM, which, to the best of our knowledge, is the lowest ever reported for the colorimetric detection of Cr (VI). Furthermore, a remarkable feature of this method is that it involves a simple technique exhibiting high selectivity to Cr (VI) over other tested heavy metal ions. (C) 2012 Elsevier BM. All rights reserved.
Resumo:
Reaction of the salicylhydrazone of 2-hydroxy-1-naphthaldehyde (H2L1), anthranylhydrazone of 2hydroxy-l-naphthaldehyde (H2L2), benzoylhydrazone of 2-hydroxy-1-acetonaphthone (H2L3) and anthranylhydrazone of 2-hydroxy-1-acetonaphthone (H2L4; general abbreviation H2L) with MoO2(acac)21 afforded a series of 5- and 6- coordinate Mo(VI) complexes of the type MoO2L1-2(ROH)] where R = C2H5 (1) and CH3 (2)], and MoO2L3-4] (3 and 4). The substrate binding capacity of 1 has been demonstrated by the formation of one mononuclear mixed-ligand dioxidomolybdenum complex MoO2L1(Q)] (where Q= gamma-picoline (la)). Molecular structure of all the complexes (I, la, 2,3 and 4) is determined by X-ray crystallography, demonstrating the dibasic tridentate behavior of ligands. All the complexes show two irreversible reductive responses within the potential window -0.73 to -1.08 V, due to Movl/Mov and Mov/Mow processes. Catalytic potential of these complexes was tested for the oxidation of benzoin using 30% aqueous H2O2 as an oxidant in methanol. At least four reaction products, benzoic acid, benzaldehydedimethylacetal, methyl benzoate and benzil were obtained with the 95-99% conversion under optimized reaction conditions. Oxidative bromination of salicylaldehyde, a functional mimic of haloperoxidases, in aqueous 1-1202/KEr in the presence of HC1O4 at room temperature has also been carried out successfully. (C) 2013 Elsevier Ltd. All rights reserved.