126 resultados para Aldehyde dehydrogenase
em Indian Institute of Science - Bangalore - Índia
Resumo:
1. 1. An increase in the oxidation of succinate by hepatic mitochondria in rats exposed to hypoxia (O2-N2; 1:9, v/v) or hypobaria (0.5 atm) was observed which appears to be due to modification of the activity of the rate-limiting succinate dehydrogenase [succinate: (acceptor) oxidoreductase, EC 1.3.99.1].
Nature of the activation of succinate dehydrogenase byvarious effectors and in hypobaria and hypoxia
Resumo:
Hepatic mitochondrial succinate dehydrogenase (succinate:(acceptor)oxidoreductase, EC 1.3.99.1) was activated by preincubation of mitochondria with four diverse classes of compounds, the dicarboxylic acids, nitrophenols, quinols (and ubiquinols) and pyrophosphates. Of the various compounds tested malonate, oxaloacetate and pyrophosphate, well-known competitive inhibitors of the enzyme, and also hydroquinone and ubiquinols were effective even at low concentrations and showed maximal stimulation in 2 min.
Resumo:
1-Acyl-2-succinyl glycero-3-phosphorylcholine (GPC) was synthesized and its properties described. Although 1-acyl-2-succinyl GPC is a good substrate for succinate dehydrogenase, experiments on the incorporation of [2,3-14C]succinate into mitochondrial lipids gave no evidence to indicate that it is an intermediate in the enzymic oxidation of succinate to fumarate, as has been suggested earlier.
Resumo:
An NADP+-specific isocitrate dehydrogenase has been purified and characterized from Rhizobium meliloti. The enzyme showed Mn++ or Mg++ requirement. The apparent Km values were 2.00×10-5 m and 1.51×10-5 m for dl-isocitrate and NADP+, respectively. The enzyme was inhibited by ATP, to a lesser extent by ADP and AMP. agr-Ketoglutarate also inhibited the enzyme activity. Oxalacetate and glyoxylate together inhibited the enzyme activity. The inhibition was competitive. Studies with thiol inhibitors suggested that the enzyme contained a sulfhydryl group at or near the active site. The enzyme has an approximate molecular weight of 60 000. Fluorescence studies suggested that the enzyme contained tryptophan.
Resumo:
1. 1. Diverse classes of compounds such as dicarboxylates, pyrophosphates, quinols and nitrophenols are known to activate mitochondrial succinate dehydrogenase (EC 1.3.99.1). Examples in each class — malonate, pyrophosphate, ubiquinol and 2,4-dinitrophenol — are selected for comparative studies on the kinetic constants and structural relationship. 2. 2. The activated forms of the enzyme obtained on preincubating mitochondria with the effectors exhibited Michaelian kinetics and gave doublereciprocal plots which are nearly parallel to that of the basal form. On activation, Km for the substrate also increased along with V. The effectors activated the enzyme at low concentrations and inhibited, in a competitive fashion, at high concentrations. The binding constant for activation was lower than that for inhibition for each effector. 3. 3. These compounds possess ionizable twin oxygens separated by a distance of Image and having fractional charges in the range of −0.26 to −0.74 e. The common twin-oxygen feature of the substrate and the effectors suggested the presence of corresponding counter charges in the binding domain. The competitive nature of effectors with the substrate for inhibition further indicated the close structural resemblance of the activation and catalytic sites.
Resumo:
A soil micro-organism identified as Alcaligenes eutrophus capable of utilizing nerolidol, a sesquiterpene alcohol as the sole source of carbon, contains an inducible NAD(P)(+)-linked secondary-alcohol dehydrogenase (SADH), The enzyme was purified 252-fold from crude cell-free extract by a combination of salt precipitation, ion-exchange and affinity-matrix chromatography, Native and SDS/PAGE PAGE of the purified enzyme showed a single protein band and the enzyme appears to be a homotetramer having an apparent molecular mass of 139 kDa comprising four identical subunits of 38.5 kDa, The isoelectric point (pi) of SADH was determined to be 6.2, Depending on pH of the reaction media, the enzyme carried out both oxidation and reductions of various terpenoids and steroids, At pH 5.5, the enzyme catalysed the stereospecific reduction of prochiral ketones to optically active (S)-alcohols and the oxidation reaction was predominated over the former at pH 9.5, NADP(+) and NADPH were respectively preferred over NAD(+) and NADH for oxidation and reduction reactions, The K-m values for testosterone, NADP(+) and NAD(+) were 11.8, 55.6, and 122 mu M respectively, Neither enzyme was significantly inhibited by metal-binding agents, but some thiol-blocking compounds inhibited it, SADH tolerates moderate concentrations of water-miscible organic solvents such as ethanol, methanol, acetone and dioxan, Some of the properties of this enzyme were found to be significantly different from those thus far described.
Resumo:
Alcaligenes eutrophus utilizing nerolidol, a sesquiterpene alcohol,as the sole source of carbon contains an inducible NAD(P)+-linked secondary alcohol dehydrogenase (SADH). The enzyme was purified to homogeneity by a combination of salt precipitation, ion exchange and affinity matri chromatographies. The apparent molecular mass of the enzyme was estimated to be 139 KDa with four identical subunits of 38.5 KDa. The enzyme carried out both oxidation and reduction reactions. At pH 5.5, enzyme catalyzed the stereospecific reduction of prochiral ketones to secondary alcohols. The pH optimum for the oxidation reaction was 9.5. NADP+ and NADPH were respectively preferred over NAD+ and NADH for oxidation and reduction reactions. Some of the properties of this enzyme were found to be significantly different from those thus far described.
Resumo:
1,3-Propanediol dehydrogenase is an enzyme that catalyzes the oxidation of 1,3-propanediol to 3-hydroxypropanal with the simultaneous reduction of NADP(+) to NADPH. SeMet-labelled 1,3-propanediol dehydrogenase protein from the hyperthermophilic bacterium Aquifex aeolicus VF5 was overexpressed in Escherichia coli and purified to homogeneity. Crystals of this protein were grown from an acidic buffer with ammonium sulfate as the precipitant. Single-wavelength data were collected at the selenium peak to a resolution of 2.4 angstrom. The crystal belonged to space group P3(2), with unit-cell parameters a = b = 142.19, c = 123.34 angstrom. The structure contained two dimers in the asymmetric unit and was solved by the MR-SAD approach.
Resumo:
A new colorimetric method for the estimation of aldehyde derivatives of vitamin A is described. The assay depends upon the formation of colored derivatives of the vitamin A aldehydes by reaction with p-aminobenzoic acid or p-aminosalicylic acid in the presence of 2.0 N hydrochloric acid.
Rapid conversion of retinal (vitamin A aldehyde) to retinoic acid (vitamin A acid) in the living rat
Resumo:
VITAMIN A is stored in rat liver largely as its ester with small amounts of the alcohol, but is transported in the normal circulating blood in the latter form1. Although it was generally believed that the alcohol form is the more physiological state of the vitamin, since the work of Dowling and Wald2, it is being recognized that vitamin A acid and not the alcohol may be nearer to the 'active vitamin A'. If this were to be so, it would be important to demonstrate that a mechanism exists in the rat for the production of vitamin A acid from vitamin A alcohol through the intermediate, the aldehyde. Regarding the formation of the aldehyde, it has been well established that the alcohol dehydrogenase can bring about the conversion of vitamin A alcohol to retinene3. The presence of an enzyme in rat and pig liver catalysing the oxidation of retinene1 and retinene2 to the corresponding acids has been demonstrated in the present work and the partially purified enzyme preparation shown to be completely devoid of alcohol dehydrogenase activity.
Resumo:
1.The reported inhibition of the succinate oxidase system at high concentrations of dinitrophenol, considered to be at the primary dehydrogenase level, is now confirmed by measuring the activity of succinate dehydrogenase (succinate:(acceptor) oxidoreductase, EC 1.3.99.1) in the presence of dinitrophenol, using the dye reduction method. 2. 2. The results indicate that the inhibition of substrate-activated succinate dehydrogenase by dinitrophenol is competitive. 3. 3. Low concentrations of dinitrophenol inhibited the basal activity, while at higher concentrations the kinetics were complicated by an apparent activation. 4. 4. Preincubation of mitochondria with dinitrophenol stimulated the enzyme activity, a phenomenon shown by succinate and competitive inhibitors. This activation was very rapid at 37°, compared to that by succinate; activation by dinitrophenol was observed even at 25°, under conditions where succinate had no effect. 5. 5. Repeated washing of the activated mitochondrial samples with the sucrose homogenizing medium reduced the succinate-stimulated activity to the basal level, but only partially reversed the dinitrophenol activation. 6. 6. The relevance of this activation phenomenon to the physiological modulation of this enzyme system is discussed.
Resumo:
Activation of succinate dehydrogenase on preincubation with mitochondria is not specific for ubiquinol-10. Other homologues of ubiquinol, plastoquinol, o-, m- and p-quinols, 2-nitro-, 4-nitro- and 2,4-dinitro- phenols showed different degrees of activation. The lipid quinols, however, showed activation greater than succinate, hitherto considered to give maximum activation.
Resumo:
Liver mitochondria isolated from vanadate-administered rats showed increased (20-25%) rates of oxidation of both NAD(+)-linked substrates and succinate. Respiratory control index and ADP/O were unaffected by the treatment. Dormant and uncoupler-stimulated ATPase activity also was not affected by vanadate administration. Membrane-bound, electron-transport-linked dehydrogenase activities (both NAD(+)- and succinate-dependent) increased by 15-20% on vanadate treatment. Mitochondrial alpha-glycerophosphate dehydrogenase activity increased by 50% on vanadate administration. The above effects of vanadate on oxidoreductase activities could be prevented by the prior administration of antagonists to alpha-adrenergic receptors. Substrate-dependent H2O2 generation by mitochondria also showed an increase on vanadate administration.