3 resultados para Albumins.
em Indian Institute of Science - Bangalore - Índia
Resumo:
The (+)-enantiomer of the polyphenolic binaphthyl gossypol, has been shown to be a useful CD probe of interactions with human and bovine serum albumin. (+)-Gossypol binds to albumin with same affinity as recemic (±)-gossypol, as shown by fluorescence quenching, and also displaces bilirubin from its albumin binding site. The CD characteristics of bound gossypol are different in the case of the two proteins.
Resumo:
Racemic gossypol has been resolved by HPLC separation of diastereomeric (−) norepinephrine adducts on a reverse-phase column. The binding constants for the interaction of the three gossypol forms (+, − and −) with human and bovine serum albumins have been determined by fluoresence quenching studies. The KD values demonstrate that all three forms bind equally effectively to the two proteins, suggesting an absence of chiral discrimination in albumin-gossypol interactions. Circular dichroism studies of (+)-gossypol binding to the model dibasic peptides, Boc-Lys-Pro-Aib-Lys-NHMe and gramicidin S, suggesting that distortions of binaphthyl geometry may occur only for specific orientations of interacting residues at the receptor site.
Resumo:
Biofunctionalization of noble metal nanoparticles like Ag, Au is essential to obtain biocompatibility for specific biomedical applications. Silver nanciparticles are being increasingly used in bio-sensing applications owing to excellent optoelectronic properties. Among the serum albumins, the most abundant proteins in plasma, a wide range of physiological functions of Bovine Serum Albumin (BSA) has made it a model system for biofunctionalization. In absence of adequate prior reports, this study aims to investigate the interaction between silver nanoparticles and BSA. The interaction of BSA [0.05-0.85% concentrations] with Ag nanoparticles [50 ppm concentration] in aqueous dispersion was Studied through UV-vis spectral changes, morphological and surface structural changes. At pH 7, which is More than the isoelectric point of BSA, a decrease in absorbance at plasmon peak of uninteracted nanciparticles (425 mn) was noted till 0.45% BSA, beyond that a blue shift towards 410 urn was observed. The blue shift may be attributed to enhanced electron density on the particle surfaces. Increasing pH to 12 enhanced the blue shift further to 400 rim. The conformational changes in BSA at alkaline pH ranges and consequent hydrophobic interactions also played an important role. The equilibrium adsorption data fitted better to Freundlich isotherm compared to Langmuir Curve. The X-ray diffraction study revealed complete coverage of Ag nanoparticles by BSA. The scanning electron microscopic study of the interacted nanoparticles was also carried Out to decipher morphological changes. This study established that tailoring the concentration of BSA and pH of the interaction it was possible to reduce aggregation of nanoparticles. Biofunctionalized Ag nanoparticles with reduced aggregation will be more amenable towards bio-sensing applications. (C) 2009 Elsevier B.V. All rights reserved.