18 resultados para Agricultural landscapes

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To achieve food security and meet the demands of the ever-growing human populations, farming systems have assumed unsustainable practices to produce more from a finite land area. This has been cause for concern mainly due to the often-irreversible damage done to the otherwise productive agricultural landscapes. Agro-ecology is proclaimed to be deteriorating due to eroding integrity of connected ecological mosaics and vulnerability to climate change. This has contributed to declining species diversity, loss of buffer vegetation, fragmentation of habitats, and loss of natural pollinators or predators, which eventually leads to decline in ecosystem services. Currently, a hierarchy of conservation initiatives is being considered to restore ecological integrity of agricultural landscapes. However, the challenge of identifying a suitable conservation strategy is a daunting task in view of socio-ecological factors that may constrain the choice of available strategies. One way to mitigate this situation and integrate biodiversity with agricultural landscapes is to implement offset mechanisms, which are compensatory and balancing approaches to restore the ecological health and function of an ecosystem. This needs to be tailored to the history of location specific agricultural practices, and the social, ecological and environmental conditions. The offset mechanisms can complement other initiatives through which farmers are insured against landscape-level risks such as droughts, fire and floods. For countries in the developing world with significant biodiversity and extensive agriculture, we should promote a comprehensive model of sustainable agricultural landscapes and ecosystem services, replicable at landscape to regional scales. Arguably, the model can be a potential option to sustain the integrity of biodiversity mosaic in agricultural landscapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wildlife conservation in human-dominated landscapes requires that we understand how animals, when making habitat-use decisions, obtain diverse and dynamically occurring resources while avoiding risks, induced by both natural predators and anthropogenic threats. Little is known about the underlying processes that enable wild animals to persist in densely populated human-dominated landscapes, particularly in developing countries. In a complex, semi-arid, fragmented, human-dominated agricultural landscape, we analyzed the habitat-use of blackbuck, a large herbivore endemic to the Indian sub-continent. We hypothesized that blackbuck would show flexible habitat-use behaviour and be risk averse when resource quality in the landscape is high, and less sensitive to risk otherwise. Overall, blackbuck appeared to be strongly influenced by human activity and they offset risks by using small protected patches (similar to 3 km(2)) when they could afford to do so. Blackbuck habitat use varied dynamically corresponding with seasonally-changing levels of resources and risks, with protected habitats registering maximum use. The findings show that human activities can strongly influence and perhaps limit ungulate habitat-use and behaviour, but spatial heterogeneity in risk, particularly the presence of refuges, can allow ungulates to persist in landscapes with high human and livestock densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new approach, wherein multiple populations are evolved on different landscapes. The problem statement is broken down, to describe discrete characteristics. Each landscape, described by its fitness landscape is used to optimize or amplify a certain characteristic or set of characteristics. Individuals from each of these populations are kept geographically isolated from each other Each population is evolved individually. After a predetermined number of evolutions, the system of populations is analysed against a normalized fitness function. Depending on this score and a predefined merging scheme, the populations are merged, one at a time, while continuing evolution. Merging continues until only one final population remains. This population is then evolved, following which the resulting population will contain the optimal solution. The final resulting population will contain individuals which have been optimized against all characteristics as desired by the problem statement. Each individual population is optimized for a local maxima. Thus when populations are merged, the effect is to produce a new population which is closer to the global maxima.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new approach, wherein multiple populations are evolved on different landscapes. The problem statement is broken down, to describe discrete characteristics. Each landscape, described by its fitness landscape is used to optimize or amplify a certain characteristic or set of characteristics. Individuals from each of these populations are kept geographically isolated from each other Each population is evolved individually. After a predetermined number of evolutions, the system of populations is analysed against a normalized fitness function. Depending on this score and a predefined merging scheme, the populations are merged, one at a time, while continuing evolution. Merging continues until only one final population remains. This population is then evolved, following which the resulting population will contain the optimal solution. The final resulting population will contain individuals which have been optimized against all characteristics as desired by the problem statement. Each individual population is optimized for a local maxima. Thus when populations are merged, the effect is to produce a new population which is closer to the global maxima.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction of agriculture three millennia ago in Peninsular India’s Western Ghats altered substantially ancient tropical forests. Early agricultural communities, nevertheless, strived to attain symbiotic harmony with nature as evident from prevalence of numerous sacred groves, patches of primeval forests sheltering biodiversity and hydrology. Groves enhanced heterogeneity of landscapes involving elements of successional forests and savannas favouring rich wildlife. A 2.25 km2 area of relic forest was studied at Kathalekan in Central Western Ghats. Interspersed with streams studded with Myristica swamps and blended sparingly with shifting cultivation fallows, Kathalekan is a prominent northernmost relic of southern Western Ghat vegetation. Trees like Syzygium travancoricum (Critically Endangered), Myristica magnifica (Endangered) and Gymnacranthera canarica (Vulnerable) and recently reported Semecarpus kathalekanensis, are exclusive to stream/swamp forest (SSF). SSF and non-stream/swamp forest (NSSF) were studied using 18 transects covering 3.6 ha. Dipterocarpaceae, its members seldom transgressing tropical rain forests, dominate SSF (21% of trees) and NSSF (27%). The ancient Myristicaceae ranks high in tree population (19% in SSF and 8% in NSSF). Shannon-Weiner diversity for trees is higher (>3) in six NSSF transects compared to SSF (<3). Higher tree endemism (45%), total endemic tree population (71%) and significantly higher above ground biomass (349 t/ha) cum carbon sequestration potential (131 t/ha) characterizes SSF. Faunal richness is evident from amphibians (35 species - 26 endemics, 11 in IUCN Red List). This study emphasizes the need for bringing to light more of relic forests for their biodiversity, carbon sequestration and hydrology. The lives of marginal farmers and forest tribes can be uplifted through partnership in carbon credits, by involving them in mitigating global climatic change through conservation and restoration of high biomass watershed forests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book introduces the major agricultural activities in India and their impact on soil and groundwater. It lists the basic aspects of agricultural activities and introduces soil properties, classification and processes, and groundwater characteristics, movement, and recharge aspects. It further discusses soil and groundwater pollution from various sources, impacts of irrigation, drainage, fertilizer, and pesticide. Finally, the book dwells upon conservation and management of groundwater and soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A growing understanding of the ecology of seed dispersal has so far had little influence on conservation practice, while the needs of conservation practice have had little influence on seed dispersal research. Yet seed dispersal interacts decisively with the major drivers of biodiversity change in the 21st century: habitat fragmentation, overharvesting, biological invasions, and climate change. We synthesize current knowledge of the effects these drivers have on seed dispersal to identify research gaps and to show how this information can be used to improve conservation management. The drivers, either individually, or in combination, have changed the quantity, species composition, and spatial pattern of dispersed seeds in the majority of ecosystems worldwide, with inevitable consequences for species survival in a rapidly changing world. The natural history of seed dispersal is now well-understood in a range of landscapes worldwide. Only a few generalizations that have emerged are directly applicable to conservation management, however, because they are frequently confounded by site-specific and species-specific variation. Potentially synergistic interactions between disturbances are likely to exacerbate the negative impacts, but these are rarely investigated. We recommend that the conservation status of functionally unique dispersers be revised and that the conservation target for key seed dispersers should be a population size that maintains their ecological function, rather than merely the minimum viable population. Based on our analysis of conservation needs, seed dispersal research should be carried out at larger spatial scales in heterogenous landscapes, examining the simultaneous impacts of multiple drivers on community-wide seed dispersal networks. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents development of a computational fluid dynamic (CFD) model to predict unsteady, two-dimensional temperature, moisture and velocity distributions inside a novel, biomass-fired, natural convection-type agricultural dryer. Results show that in initial stages of drying, when material surface is wet and moisture is easily available, moisture removal rate from surface depends upon the condition of drying air. Subsequently, material surface becomes dry and moisture removal rate is driven by diffusion of moisture from inside to the material surface. An optimum 9-tray configuration is found to be more efficient than for the same mass of material and volume of dryer. A new configuration of dryer, mainly to explore its potential to increasing uniformity in drying across all trays, is also analyzed. This configuration involves diverting a portion of hot air before it enters over the first tray and is supplied directly at an intermediate location in the dryer. Uniformity in drying across trays has increased for the kind of material simulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For improved water management and efficiency of use in agriculture, studies dealing with coupled crop-surface water-groundwater models are needed. Such integrated models of crop and hydrology can provide accurate quantification of spatio-temporal variations of water balance parameters such as soil moisture store, evapotranspiration and recharge in a catchment. Performance of a coupled crop-hydrology model would depend on the availability of a calibrated crop model for various irrigated/rainfed crops and also on an accurate knowledge of soil hydraulic parameters in the catchment at relevant scale. Moreover, such a coupled model should be designed so as to enable the use/assimilation of recent satellite remote sensing products (optical and microwave) in order to model the processes at catchment scales. In this study we present a framework to couple a crop model with a groundwater model for applications to irrigated groundwater agricultural systems. We discuss the calibration of the STICS crop model and present a methodology to estimate the soil hydraulic parameters by inversion of crop model using both ground and satellite based data. Using this methodology we demonstrate the feasibility of estimation of potential recharge due to spatially varying soil/crop matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comprehensive study of two of the most experimentally relevant extensions of Kitaev's spinless model of a one-dimensional p-wave superconductor: those involving (i) longer-range hopping and superconductivity and (ii) inhomogeneous potentials. We commence with a pedagogical review of the spinless model and, as a means of characterizing topological phases exhibited by the systems studied here, we introduce bulk topological invariants as well as those derived from an explicit consideration of boundary modes. In time-reversal symmetric systems, we find that the longer range hopping leads to topological phases characterized by multiple Majorana modes. In particular, we investigate a spin model that respects a duality and maps to a fermionic model with multiple Majorana modes; we highlight the connection between these topological phases and the broken symmetry phases in the original spin model. In the presence of time-reversal symmetry breaking terms, we show that the topological phase diagram is characterized by an extended gapless regime. For the case of inhomogeneous potentials, we explore phase diagrams of periodic, quasiperiodic, and disordered systems. We present a detailed mapping between normal state localization properties of such systems and the topological phases of the corresponding superconducting systems. This powerful tool allows us to leverage the analyses of Hofstadter's butterfly and the vast literature on Anderson localization to the question of Majorana modes in superconducting quasiperiodic and disordered systems, respectively. We briefly touch upon the synergistic effects that can be expected in cases where long-range hopping and disorder are both present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land use (LU) land cover (LC) information at a temporal scale illustrates the physical coverage of the Earth's terrestrial surface according to its use and provides the intricate information for effective planning and management activities. LULC changes are stated as local and location specific, collectively they act as drivers of global environmental changes. Understanding and predicting the impact of LULC change processes requires long term historical restorations and projecting into the future of land cover changes at regional to global scales. The present study aims at quantifying spatio temporal landscape dynamics along the gradient of varying terrains presented in the landscape by multi-data approach (MDA). MDA incorporates multi temporal satellite imagery with demographic data and other additional relevant data sets. The gradient covers three different types of topographic features, planes; hilly terrain and coastal region to account the significant role of elevation in land cover change. The seasonality is another aspect to be considered in the vegetation dominated landscapes; variations are accounted using multi seasonal data. Spatial patterns of the various patches are identified and analysed using landscape metrics to understand the forest fragmentation. The prediction of likely changes in 2020 through scenario analysis has been done to account for the changes, considering the present growth rates and due to the proposed developmental projects. This work summarizes recent estimates on changes in cropland, agricultural intensification, deforestation, pasture expansion, and urbanization as the causal factors for LULC change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Culturally protected forest patches or sacred groves have been the integral part of many traditional societies. This age old tradition is a classic instance of community driven nature conservation sheltering native biodiversity and supporting various ecosystem functions particularly hydrology. The current work in Central Western Ghats of Karnataka, India, highlights that even small sacred groves amidst humanised landscapes serve as tiny islands of biodiversity, especially of rare and endemic species. Temporal analysis of landuse dynamics reveals the changing pattern of the studied landscape. There is fast reduction of forest cover (15.14-11.02 %) in last 20 years to meet up the demand of agricultural land and plantation programs. A thorough survey and assessment of woody endemic species distribution in the 25 km(2) study area documented presence of 19 endemic species. The distribution of these species is highly skewed towards the culturally protected patches in comparison to other land use elements. It is found that, among the 19 woody endemic species, those with greater ecological amplitude are widely distributed in the studied landscape in groves as well as other land use forms whereas, natural population of the sensitive endemics are very much restricted in the sacred grove fragments. The recent degradation in the sacred grove system is perhaps, due to weakening of traditional belief systems and associated laxity in grove protection leading to biotic disturbances. Revitalisation of traditional practices related to conservation of sacred groves can go a long way in strengthening natural ecological systems of fragile humid tropical landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While considered as sustainable and low-cost agricultural amendments, the impacts of organic fertilizers on downstream aquatic microbial communities remain poorly documented. We investigated the quantity and quality of the dissolved organic matter leaching from agricultural soil amended with compost, vermicompost or biochar and assessed their effects on lake microbial communities, in terms of viral and bacterial abundances, community structure and metabolic potential. The addition of compost and vermicompost significantly increased the amount of dissolved organic carbon in the leachate compared with soil alone. Leachates from these additions, either with or without biochar, were highly bioavailable to aquatic microbial communities, although reducing the metabolic potential of the community and harbouring more specific communities. Although not affecting bacterial richness or taxonomic distributions, the specific addition of biochar affected the original lake bacterial communities, resulting in a strongly different community. This could be partly explained by viral burst and converging bacterial abundances throughout the samples. These results underline the necessity to include off-site impacts of agricultural amendments when considering their cascading effect on downstream aquatic ecosystems.