2 resultados para Aetoliko Lagoon, Greece
em Indian Institute of Science - Bangalore - Índia
Resumo:
Coastal lagoons are complex ecosystems exhibiting a high degree of non-linearity in the distribution and exchange of nutrients dissolved in the water column due to their spatio-temporal characteristics. This factor has a direct influence on the concentrations of chlorophyll-a, an indicator of the primary productivity in the water bodies as lakes and lagoons. Moreover the seasonal variability in the characteristics of large-scale basins further contributes to the uncertainties in the data on the physico-chemical and biological characteristics of the lagoons. Considering the above, modelling the distributions of the nutrients with respect to the chlorophyll-concentrations, hence requires an effective approach which will appropriately account for the non-linearity of the ecosystem as well as the uncertainties in the available data. In the present investigation, fuzzy logic was used to develop a new model of the primary production for Pulicat lagoon, Southeast coast of India. Multiple regression analysis revealed that the concentrations of chlorophyll-a in the lagoon was highly influenced by the dissolved concentrations of nitrate, nitrites and phosphorous to different extents over different seasons and years. A high degree of agreement was obtained between the actual field values and those predicted by the new fuzzy model (d = 0.881 to 0.788) for the years 2005 and 2006, illustrating the efficiency of the model in predicting the values of chlorophyll-a in the lagoon.
Resumo:
Loads that miss in L1 or L2 caches and waiting for their data at the head of the ROB cause significant slow down in the form of commit stalls. We identify that most of these commit stalls are caused by a small set of loads, referred to as LIMCOS (Loads Incurring Majority of COmmit Stalls). We propose simple history-based classifiers that track commit stalls suffered by loads to help us identify this small set of loads. We study an application of these classifiers to prefetching. The classifiers are used to train the prefetcher to focus on the misses suffered by LIMCOS. This, referred to as focused prefetching, results in a 9.8% gain in IPC over naive GHB based delta correlation prefetcher along with a 20.3% reduction in memory traffic for a set of 17 memory-intensive SPEC2000 benchmarks. Another important impact of focused prefetching is a 61% improvement in the accuracy of prefetches. We demonstrate that the proposed classification criterion performs better than other existing criteria like criticality and delinquent loads. Also we show that the criterion of focusing on commit stalls is robust enough across cache levels and can be applied to any prefetcher without any modifications to the prefetcher.