626 resultados para Adhesive structural
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this article, the effect of two solvents, namely dimethyl formamide (DMF) and N-methyl pyrrolidone (NMP), on the dispersion effectiveness and the resulting electrical and mechanical properties of multi-walled carbonanotubes (MNCNT) filled structural adhesive grade epoxy nanocomposites was studied. The solvents were used mainly to reduce the viscosity of the resin system to effectively disperse the nanofiller. The dispersion was carried out under vacuum using high energy sonic waves. SEM was undertaken to study the dispersion effectiveness. Electrical resistivity, tensile properties, and glass transition of the nanocomposites were studied. Between DMF and NMP, the former proved better in terms of dispersion effectiveness and the resulting electrical and mechanical properties of the nanocomposites. Addition of MWCNT into AV138M resulted in an increase in glass transition temperature irrespective of the solvent used and in both cases percolation threshold was found with respect to reduction in electrical resistivity of the nanocomposites. Less agglomeration and hence better interaction between CNT and epoxy was observed in the samples prepared using DMF compared with that using NMP.
Resumo:
The effect of Radio Frequency (RF) power on the properties of magnetron sputtered Al doped ZnO thin films and the related sensor properties are investigated. A series of 2 wt% Al doped ZnO; Zn0.98Al0.02O (AZO) thin films prepared with magnetron sputtering at different RF powers, are examined. The structural results reveal a good adhesive nature of thin films with quartz substrates as well as increasing thickness of the films with increasing RF power. Besides, the increasing RF power is found to improve the crystallinity and grain growth as confirmed by X-ray diffraction. On the other hand, the optical transmittance is significantly influenced by the RF power, where the transparency values achieved are higher than 82% for all the AZO thin films and the estimated optical band gap energy is found to decrease with RF power due to an increase in the crystallite size as well as the film thickness. In addition, the defect induced luminescence at low temperature (77 K) and room temperature (300 K) was studied through photoluminescence spectroscopy, it is found that the defect density of electronic states of the Al3+ ion increases with an increase of RF power due to the increase in the thickness of the film and the crystallite size. The gas sensing behavior of AZO films was studied for NO2 at 350 degrees C. The AZO film shows a good response towards NO2 gas and also a good relationship between the response and the NO2 concentration, which is modeled using an empirical formula. The sensing mechanism of NO2 is discussed.
Resumo:
The effect of Radio Frequency (RF) power on the properties of magnetron sputtered Al doped ZnO thin films and the related sensor properties are investigated. A series of 2 wt% Al doped ZnO; Zn0.98Al0.02O (AZO) thin films prepared with magnetron sputtering at different RF powers, are examined. The structural results reveal a good adhesive nature of thin films with quartz substrates as well as increasing thickness of the films with increasing RF power. Besides, the increasing RF power is found to improve the crystallinity and grain growth as confirmed by X-ray diffraction. On the other hand, the optical transmittance is significantly influenced by the RF power, where the transparency values achieved are higher than 82% for all the AZO thin films and the estimated optical band gap energy is found to decrease with RF power due to an increase in the crystallite size as well as the film thickness. In addition, the defect induced luminescence at low temperature (77 K) and room temperature (300 K) was studied through photoluminescence spectroscopy, it is found that the defect density of electronic states of the Al3+ ion increases with an increase of RF power due to the increase in the thickness of the film and the crystallite size. The gas sensing behavior of AZO films was studied for NO2 at 350 degrees C. The AZO film shows a good response towards NO2 gas and also a good relationship between the response and the NO2 concentration, which is modeled using an empirical formula. The sensing mechanism of NO2 is discussed.
Resumo:
Lithium silicophosphate glasses have been prepared by a sol-gel route over a wide range of compositions. Their structural and electrical properties have been investigated. Infrared spectroscopic studies show the presence of hydroxyl groups attached to Si and P. MAS NMR investigations provide evidence for the presence of different phosphatic units in the structure. The variations of de conductivities at 423 K and activation energies have been studied as a function of composition, and both exhibit an increasing trend with the ratio of nonbridging oxygen to bridging oxygen in the structure. Ac conductivity behavior shows that the power law exponent, s, is temperature dependent and exhibits a minimum. Relaxation behavior has been examined in detail using an electrical modulus formalism, and modulus data were fitted to Kohlraush-William-Watts stretched exponential function. A structural model has been proposed and the unusual properties exhibited by this unique system of glasses have been rationalized using this model. Ion transport in these glasses appears to be confined to unidimensional conduits defined by modified phosphate chains and interspersed with unmodified silica units.
Resumo:
Neutron diffraction measurement is carried out on GexSe1-x glasses, where 0.1 less than or equal to x less than or equal to 0.4, in a Q interval of 0.55-13.8 Angstrom(-1). The first sharp diffraction peak (FSDP) in the structure factor, S(Q), shows a systematic increase in the intensity and shifts to a lower Q with increasing Ge concentration. The coherence length of FSDP increases with x and becomes maximum for 0.33 less than or equal to x less than or equal to 0.4. The Monte-Carlo method, due to Soper, is used to generate S(Q) and also the pair correlation function, g(r). The generated S(Q) is in agreement with the experimental data for all x. Analysis of the first four peaks in the total correlation function, T(r), shows that the short range order in GeSe2 glass is due to Ge(Se-1/2)(4) tetrahedra, in agreement with earlier reports. Se-rich glasses contain Se-chains which are cross-linked with Ge(Se-1/2)(4) tetrahedra. Ge-2(Se-1/2)(6) molecular units are the basic structural units in Ge-rich, x = 0.4, glass. For x = 0.2, 0.33 and 0.4 there is evidence for some of the tetrahedra being in an edge-shared configuration. The number of edge-shared tetrahedra in these glasses increase with increasing Ge content.
Resumo:
Background: Disulphide bridges are well known to play key roles in stability, folding and functions of proteins. Introduction or deletion of disulphides by site-directed mutagenesis have produced varying effects on stability and folding depending upon the protein and location of disulphide in the 3-D structure. Given the lack of complete understanding it is worthwhile to learn from an analysis of extent of conservation of disulphides in homologous proteins. We have also addressed the question of what structural interactions replaces a disulphide in a homologue in another homologue. Results: Using a dataset involving 34,752 pairwise comparisons of homologous protein domains corresponding to 300 protein domain families of known 3-D structures, we provide a comprehensive analysis of extent of conservation of disulphide bridges and their structural features. We report that only 54% of all the disulphide bonds compared between the homologous pairs are conserved, even if, a small fraction of the non-conserved disulphides do include cytoplasmic proteins. Also, only about one fourth of the distinct disulphides are conserved in all the members in protein families. We note that while conservation of disulphide is common in many families, disulphide bond mutations are quite prevalent. Interestingly, we note that there is no clear relationship between sequence identity between two homologous proteins and disulphide bond conservation. Our analysis on structural features at the sites where cysteines forming disulphide in one homologue are replaced by non-Cys residues show that the elimination of a disulphide in a homologue need not always result in stabilizing interactions between equivalent residues. Conclusion: We observe that in the homologous proteins, disulphide bonds are conserved only to a modest extent. Very interestingly, we note that extent of conservation of disulphide in homologous proteins is unrelated to the overall sequence identity between homologues. The non-conserved disulphides are often associated with variable structural features that were recruited to be associated with differentiation or specialisation of protein function.
Resumo:
The diphenoxy bicyclic tetraphosphapentazane derivatives (EtN)(5)P-4(OPh)(2) 2 and its monoxide (EtN)(5)P-4(O)(OPh)(2) 3 have been prepared. Both 2 and 3 exist as a mixture of two isomers. One isomer of (EtN)(5)P-4(O)(OPh)(2) 3a has been isolated and its reaction with tetrachloro-1,2-benzoquinone yielded (EtN)(5)P-4(O)(OPh)(2)(O2C6Cl4) 5 in which the junction phosphorus atom becomes five-co-ordinated. Treatment of 2 or 3a with [Mo(CO)(4)(nbd)] (nbd = norbornadiene, bicyclo[2.2.1]hepta-2,5-diene), on the other hand, yielded the chelate complex [Mo(CO)(4){(EtN)(5)P-4(O)(n)(OPh)(2)}] (n = 0 or 1; 6 or 7) in which the peripheral phosphorus atoms are bonded to the metal. The structures of 3a and 5-7 have been confirmed by single-crystal X-ray diffraction studies. The two P3N3 rings in 3a and 5 adopt twist/twist and irregular/twist conformations respectively; the phenoxy substituents occupy the 'pseudo axial' positions. However, an ideal chair conformation is observed for the P3N3 rings in 6 and 7 with the phenoxy substituents taking up the 'pseudo equatorial' positions. The NMR spectroscopic data for the compounds are discussed.
Resumo:
Uniaxial compression experiments on 0.3, 1 and 3 mu m diameter micropillars of a Zr-based bulk metallic glass in as-cast, shot-peened and structurally relaxed conditions were conducted. Shear band formation and stable propagation is observed to be the plastic deformation mode in all cases, with no detectable difference in yield strength according to either size or condition. The limitations of uniaxial compression tests in assessing the influence of various material conditions on plasticity, when it is inhomogeneous in nature, are illustrated.
Resumo:
A simple and practical technique for the discrete representation of reinforcement in two-dimensional boundary element analysis of reinforced concrete structural elements is presented. The bond developed over the surface of contact between the reinforcing steel and concrete is represented using fictitious one-dimensional spring elements. Potentials of the model developed are demonstrated using a number of numerical examples. The results are seen to be in good agreement with the results obtained using standard finite element software.
Resumo:
To circumvent the practical difficulties in research on tropical rainforest lianas in their natural habitat due to prevailing weather conditions, dense camouflaging vegetation and problems in transporting equipment for experimental investigations, Entada pursaetha DC (syn. Entada scandens Benth., Leguminosae) was grown inside a research campus in a dry subtropical environment. A solitary genet has attained a gigantic size in 17 years, infesting crowns of semi-evergreen trees growing in an area roughly equivalent to 1.6 ha. It has used aerially formed, cable-like stolons for navigating and spreading its canopy across tree gaps. Some of its parts which had remained unseen in its natural habitat due to dense vegetation are described. The attained size of this liana in a climatically different environment raises the question as to why it is restricted to evergreen rainforests. Some research problems for which this liana will be useful are pointed out.
Resumo:
Seven L-phenylalanine based alkyl (monopolar) and alkanediyl (bipolar) derivatives are synthesized; while the bipolar urethane amides form gels and show strong adhesive properties, the monopolar analogues form fibrous nanoscopic cloth-like tapes.
Resumo:
Elucidation of the detailed structural features and sequence requirements for iv helices of various lengths could be very important in understanding secondary structure formation in proteins and, hence. in the protein folding mechanism. An algorithm to characterize the geometry of an alpha helix from its C-alpha coordinates has been developed and used to analyze the structures of long cu helices (number of residues greater than or equal to 25) found in globular proteins, the crystal structure coordinates of which are available from the Brookhaven Protein Data Bank, Ail long a helices can be unambiguously characterized as belonging to one of three classes: linear, curved, or kinked, with a majority being curved. Analysis of the sequences of these helices reveals that the long alpha helices have unique sequence characteristics that distinguish them from the short alpha helices in globular proteins, The distribution and statistical propensities of individual amino acids to occur in long alpha heices are different from those found in short alpha helices, with amino acids having longer side chains and/or having a greater number of functional groups occurring more frequently in these helices, The sequences of the long alpha helices can be correlated with their gross structural features, i.e., whether they are curved, linear, or kinked, and in case of the curved helices, with their curvature.
Resumo:
Time-frequency analysis of various simulated and experimental signals due to elastic wave scattering from damage are performed using wavelet transform (WT) and Hilbert-Huang transform (HHT) and their performances are compared in context of quantifying the damages. Spectral finite element method is employed for numerical simulation of wave scattering. An analytical study is carried out to study the effects of higher-order damage parameters on the reflected wave from a damage. Based on this study, error bounds are computed for the signals in the spectral and also on the time-frequency domains. It is shown how such an error bound can provide all estimate of error in the modelling of wave propagation in structure with damage. Measures of damage based on WT and HHT is derived to quantify the damage information hidden in the signal. The aim of this study is to obtain detailed insights into the problem of (1) identifying localised damages (2) dispersion of multifrequency non-stationary signals after they interact with various types of damage and (3) quantifying the damages. Sensitivity analysis of the signal due to scattered wave based on time-frequency representation helps to correlate the variation of damage index measures with respect to the damage parameters like damage size and material degradation factors.
Resumo:
Amorphous carbon-sulfur (a-C:S) composite films were prepared by vapor phase pyrolysis technique. The structural changes in the a-C:S films were investigated by electron microscopy. A powder X-ray diffraction (XRD) study depicts the two-phase nature of a sulfur-incorporated a-C system. The optical bandgap energy shows a decreasing trend with an increase in the sulfur content and preparation temperature. This infers a sulfur incorporation and pyrolysis temperature induced reduction in structural disorder or increase in sp (2) or pi-sites. The presence of sulfur (S 2p) in the a-C:S sample is analyzed by the X-ray photoelectron spectroscopy (XPS). The sp (3)/sp (2) hybridization ratio is determined by using the XPS C 1s peak fitting, and the results confirm an increase in sp (2) hybrids with sulfur addition to a-C. The electrical resistivity variation in the films depends on both the sulfur concentration and the pyrolysis temperature.
Resumo:
An inexpensive and effective simple method for the preparation of nano-crystalline titanium oxide (anatase) thin films at room temperature on different transparent substrates is presented. This method is based on the use of peroxo-titanium complex, i.e. titanium isopropoxide as a single initiating organic precursor. Post-annealing treatment is necessary to convert the deposited amorphous film into titanium oxide (TiO2) crystalline (anatase) phase. These films have been characterized for X-ray diffraction (XRD) studies, atomic force microscopic (AFM) studies and optical measurements. The optical constants such as refractive index and extinction coefficient have been estimated by using envelope technique. Also, the energy gap values have been estimated using Tauc's formula for on glass and quartz substrates are found to be 3.35 eV and 3.39 eV, respectively.