5 resultados para Adenomatous Hyperplasia
em Indian Institute of Science - Bangalore - Índia
Resumo:
During the course of genome studies in a rural community in the South Indian state of Karnataka, DNA-based investigations and counselling for familial adenomatous polyposis (FAP) were requested via the community physician. The proposita died in 1940 and FAP had been clinically diagnosed in 2 of her 5 children, both deceased. DNA samples from 2 affected individuals in the third generation were screened for mutations in the APC gene, and a frame-shift mutation was identified in exon 15 with a common deletion at codon 1061. Predictive testing for the mutation was then organized on a voluntary basis. There were 11 positive tests, including confirmatory positives on 2 persons diagnosed by colonoscopy, and to date surgery has been successfully undertaken on 3 previously undiagnosed adults. The ongoing success of the study indicates that, with appropriate access to the facilities offered by collaborating centres, predictive testing is feasible for diseases such as FAP and could be of significant benefit to communities in economically less developed countries.
Resumo:
Background—Mutations of the APC gene cause familial adenomatous polyposis (FAP), a hereditary colorectal cancer predisposition syndrome.Aims—To conduct a cost comparison analysis of predictive genetic testing versus conventional clinical screening for individuals at risk of inheriting FAP, using the perspective of a third party payer. Methods—All direct health care costs for both screening strategies were measured according to time and motion, and the expected costs evaluated using a decision analysis model.Results—The baseline analysis predicted that screening a prototype FAP family would cost $4975/£3109 by molecular testingand $8031/£5019 by clinical screening strategy, when family members were monitored with the same frequency of clinical surveillance (every two to three years). Sensitivity analyses revealed that the genetic testing approach is cost saving for key variables including the kindred size, the age of screening onset, and the cost of mutation identification in a proband. However, if the APC mutation carriers were monitored at an increased (annual) frequency, the cost of the genetic screening strategy increased to $7483/ £4677 and was especially sensitive to variability in age of onset of screening, family size, and cost of genetic testing of at risk relatives. Conclusions—In FAP kindreds, a predictive genetic testing strategy costs less than conventional clinical screening, provided that the frequency of surveillance is identical using either strategy. An additional significant benefit is the elimination of unnecessary colonic examinations for those family members found to be noncarriers.
Resumo:
3,5-Diethoxycarbonyl-1,4-dihydrocollidine (DDC) is a porphyrinogenic agent and is a powerful inducer of δ-aminolaevulinate synthetase, the first and rate-limiting enzyme of the haem-biosynthetic pathway, in mouse liver. However, DDC strikingly inhibits mitochondrial as well as microsomal haem synthesis by depressing the activity of ferrochelatase in vivo. The drug on repeated administration to female mice has been found to elicit hypertrophic effects in the liver microsomes initially, but the effects observed at later stages denote either hyperplasia or increase in polyploidal cells. The microsomal protein concentration shows a striking decrease with repeated doses of the drug. The rate of microsomal protein synthesis in vivo as well as in vitro shows an increase with two injections of DDC but decreases considerably with repeated administration of the drug. The activities of NADPH-cytochrome creductase and ribonuclease are not affected in the liver microsomes of drug-treated animals when expressed per mg of microsomal protein. DDC has also been found to cause degradation of microsomal haem, which is primarily responsible for the decrease in cytochrome P-450 content. The drug also leads to a decrease in mitochondrial cytochrome c levels due to inhibition of haem synthesis and also due to degradation of mitochondrial haem at later stages. The biochemical effects of the drug are compared and discussed with those reported for allylisopropylacetamide and phenobarbital.
Resumo:
Background: Recent studies have implicated aberrant Notch signaling in breast cancers. Yet, relatively little is known about the pattern of expression of various components of the Notch pathway, or its mechanism of action. To better understand the role of the Notch pathway in breast cancer, we have undertaken a detailed expression analysis of various Notch receptors, their ligands, and downstream targets at different stages of breast cancer progression. Results: We report here that there is a general increase in the expression levels of Notch 1, 2, 4, Jagged1, Jagged2, and Delta-like 4 proteins in breast cancers, with simultaneous upregulation of multiple Notch receptors and ligands in a given cancer tissue. While Notch3 and Delta-like1 were undetectable in normal tissues, moderate to high expression was detected in several cancers. We detected the presence of active, cleaved Notch1, along with downstream targets of the Notch pathway, Hes1/Hes5, in similar to 75% of breast cancers, clearly indicating that in a large proportion of breast cancers Notch signaling is aberrantly activated. Furthermore, we detected cleaved Notch1 and Hes1/5 in early precursors of breast cancers - hyperplasia and ductal carcinoma in situ suggesting that aberrant Notch activation may be an early event in breast cancer progression. Mechanistically, while constitutively active Notch1 alone failed to transform immortalized breast cells, it synergized with the Ras/MAPK pathway to mediate transformation. This cooperation is reflected in vivo, as a subset of cleaved Notch positive tumors additionally expressed phopsho-Erk1/2 in the nuclei. Such cases exhibited high node positivity, suggesting that Notch-Ras cooperation may lead to poor prognosis. Conclusions: High level expression of Notch receptors and ligands, and its increased activation in several breast cancers and early precursors, places Notch signaling as a key player in breast cancer pathogenesis. Its cooperation with the Ras/MAPK pathway in transformation offers combined inhibition of the two pathways as a new modality for breast cancer treatment.
Resumo:
In our pursuit to develop new potential anticancer leads, we designed a combination of structural units of indole and substituted triazole; and a library of 1-{1-methyl-2-4-phenyl-5-(propan-2-ylsulfanyl)-4H-1,2,4-triazol-3-yl ]-1H-indol-3-yl}methanamine derivatives was synthesized and characterized. Cytotoxic evaluations of these molecules over a panel of three human cancer cell lines were carried out. Few molecules exhibited potent growth inhibitory action against the treated cancer cell lines at lower micro molar concentration. An in vitro assay investigation of these active compounds using recombinant human SIRT1 enzyme showed that one of the compounds (IT-14) inhibited the deacetylation activity of the enzyme. The in vivo study of IT-14 exemplified its promising action by reducing the prostate weight to the body weight ratio in prostate hyperplasia animal models. A remarkable decrease in the disruption of histoarchitecture of the prostate tissues isolated from IT-14 treated animal compared to that of the positive control was observed. The molecular interactions with SIRT1 enzyme were also supported by molecular docking simulations. Hence this compound can act as a lead molecule to treat prostatic hyperplasia. (C) 2013 Elsevier Masson SAS. All rights reserved.