60 resultados para Adaptive control system
em Indian Institute of Science - Bangalore - Índia
Resumo:
A class of model reference adaptive control system which make use of an augmented error signal has been introduced by Monopoli. Convergence problems in this attractive class of systems have been investigated in this paper using concepts from hyperstability theory. It is shown that the condition on the linear part of the system has to be stronger than the one given earlier. A boundedness condition on the input to the linear part of the system has been taken into account in the analysis - this condition appears to have been missed in the previous applications of hyperstability theory. Sufficient conditions for the convergence of the adaptive gain to the desired value are also given.
Resumo:
In this article, theoretical and the experimental studies are reported on the adaptive control of vibration transmission in a strut system subjected to a longitudinal pulse train excitation. In the control scheme, a magneto-strictive actuator is employed at the downstream transmission point in the secondary path. The actuator dynamics is taken into account. The system boundary parameters are first estimated off-line, and later employed to simulate the system dynamics. A Delayed-X Filtered-E spectral algorithm is proposed and implemented in real time. The underlying mechanics based filter construction allows for the time varying system dynamics to be taken into account. This work should be of interest for active control of vibration and noise transmission in helicopter gearbox support struts and other systems.
Resumo:
A nonlinear adaptive system theoretic approach is presented in this paper for effective treatment of infectious diseases that affect various organs of the human body. The generic model used does not represent any specific disease. However, it mimics the generic immunological dynamics of the human body under pathological attack, including the response to external drugs. From a system theoretic point of view, drugs can be interpreted as control inputs. Assuming a set of nominal parameters in the mathematical model, first a nonlinear controller is designed based on the principle of dynamic inversion. This treatment strategy was found to be effective in completely curing "nominal patients". However, in some cases it is ineffective in curing "realistic patients". This leads to serious (sometimes fatal) damage to the affected organ. To make the drug dosage design more effective, a model-following neuro-adaptive control design is carried out using neural networks, which are trained (adapted) online. From simulation studies, this adaptive controller is found to be effective in killing the invading microbes and healing the damaged organ even in the presence of parameter uncertainties and continuing pathogen attack.
Resumo:
In arriving at the ideal filter transfer function for an active noise control system in a duct, the effect of the auxiliary sources (generally loudspeakers) on the waves generated by the primary source has invariably been neglected in the existing literature, implying a rigid wall or infinite impedance. The present paper presents a fairly general analysis of a linear one-dimensional noise control system by means of block diagrams and transfer functions. It takes into account the passive as well as active role of a terminal primary source, wall-mounted auxiliary source, open duct radiation impedance, and the effects of mean flow and damping. It is proved that the pressure generated by a source against a load impedance can be looked upon as a sum of two pressure waves, one generated by the source against an anechoic termination and the other by reflecting the rearward wave (incident on the source) off the passive source impedance. Application of this concept is illustrated for both the types of sources. A concise closed-form expression for the ideal filter transfer function is thus derived and discussed. Finally, the dynamics of an adaptive noise control system is discussed briefly, relating its standing-wave variables and transfer functions with those of the progressive-wave model presented here.
Resumo:
The paper presents a new criterion for designing a power-system stabiliser, which is that it should cancel the negative damping torque inherent in a synchronous generator and automatic voltage regulator. The method arises from analysis based on the properties of tensor invariance, but it is easily implemented, and leads to the design of an adaptive controller. Extensive computations and simulation have been performed, and laboratory tests have been conducted on a computer-controlled micromachine system. Results are presented illustrating the effectiveness of the adaptive stabiliser.
Resumo:
A module containing all the functional components required for a digital absolute positioning process of one axis of a machine tool has been designed and constructed. Circuit realization makes use of integrated circuit elements.
Resumo:
The complex three-dimensional flowfield produced by secondary injection of hot gases in a rocket nozzle for thrust vector control is analyzed by solving unsteady three-dimensional Euler equations with appropriate boundary conditions. Various system performance parameters like secondary jet amplification factor and axial thrust augmentation are deduced by integrating the nozzle wall pressure distributions obtained as part of the flowfield solution and compared with measurements taken in actual static tests. The agreement is good within the practical range of secondary injectant flow rates for thrust vector control applications.
Resumo:
Milito and Cruz have introduced a novel adaptive control scheme for finite Markov chains when a finite parametrized family of possible transition matrices is available. The scheme involves the minimization of a composite functional of the observed history of the process incorporating both control and estimation aspects. We prove the a.s. optimality of a similar scheme when the state space is countable and the parameter space a compact subset ofR.
Resumo:
This letter proposes the combination of a passive muffler and an active noise control system for the control of very high‐level noise in ducts used with large industrial fans and similar equipment. The analysis of such a hybrid system is presented making use of electroacoustic analogies and the transfer matrix method. It turns out that a passive muffler upstream of the input microphone can indeed lower the acoustic pressure and, hence, the power requirement of the auxiliary source. The parameter that needs to be optimized (or maximized) for this purpose is a certain velocity ratio that can readily be evaluated in a closed form, making it more or less straightforward to synthesize the configuration of an effective passive muffler to go with the active noise control system.
Resumo:
We propose for the first time two reinforcement learning algorithms with function approximation for average cost adaptive control of traffic lights. One of these algorithms is a version of Q-learning with function approximation while the other is a policy gradient actor-critic algorithm that incorporates multi-timescale stochastic approximation. We show performance comparisons on various network settings of these algorithms with a range of fixed timing algorithms, as well as a Q-learning algorithm with full state representation that we also implement. We observe that whereas (as expected) on a two-junction corridor, the full state representation algorithm shows the best results, this algorithm is not implementable on larger road networks. The algorithm PG-AC-TLC that we propose is seen to show the best overall performance.
Resumo:
India's energy demand is increasing rapidly with the intensive growth of economy. The electricity demand in India exceeded the availability, both in terms of base load energy and peak availability. The efficient use of energy source and its conversion and utilizations are the viable alternatives available to the utilities or industry. There are essentially two approaches to electrical energy management. First at the supply / utility end (Supply Side Management or SSM) and the other at the consumer end (Demand Side Management or DSM). This work is based on Supply Side Management (SSM) protocol and consists of design, fabrication and testing of a control device that will be able to automatically regulate the power flow to an individual consumer's premise. This control device can monitor the overuse of electricity (above the connected load or contracted demand) by the individual consumers. The present project work specially emphasizes on contract demand of every consumer and tries to reduce the use beyond the contract demand. This control unit design includes both software and hardware work and designed for 0.5 kW contract demand. The device is tested in laboratory and reveals its potential use in the field.
Resumo:
The author presents adaptive control techniques for controlling the flow of real-time jobs from the peripheral processors (PPs) to the central processor (CP) of a distributed system with a star topology. He considers two classes of flow control mechanisms: (1) proportional control, where a certain proportion of the load offered to each PP is sent to the CP, and (2) threshold control, where there is a maximum rate at which each PP can send jobs to the CP. The problem is to obtain good algorithms for dynamically adjusting the control level at each PP in order to prevent overload of the CP, when the load offered by the PPs is unknown and varying. The author formulates the problem approximately as a standard system control problem in which the system has unknown parameters that are subject to change. Using well-known techniques (e.g., naive-feedback-controller and stochastic approximation techniques), he derives adaptive controls for the system control problem. He demonstrates the efficacy of these controls in the original problem by using the control algorithms in simulations of a queuing model of the CP and the load controls.
Resumo:
For high performance aircrafts, the flight control system needs to be quite effective in both assuring accurate tracking of pilot commands, while simultaneously assuring overall stability of the aircraft. In addition, the control system must also be sufficiently robust to cater to possible parameter variations. The primary aim of this paper is to enhance the robustness of the controller for a HPA using neuro-adaptive control design. Here the architecture employs a network of Gaussian Radial basis functions to adaptively compensate for the ignored system dynamics. A stable weight mechanism is determined using Lyapunov theory. The network construction and performance of the resulting controller are illustrated through simulations with a low-fidelity six –DOF model of F16 that is available in open literature.