51 resultados para Active appearance model

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A vibration isolator is described which incorporates a near-zero-spring-rate device within its operating range. The device is an assembly of a vertical spring in parallel with two inclined springs. A low spring rate is achieved by combining the equivalent stiffness in the vertical direction of the inclined springs with the stiffness of the vertical central spring. It is shown that there is a relation between the geometry and the stiffness of the individual springs that results in a low spring rate. Computer simulation studies of a single-degree-of-freedom model for harmonic base input show that the performance of the proposed scheme is superior to that of the passive schemes with linear springs and skyhook damping configuration. The response curves show that, for small to large amplitudes of base disturbance, the system goes into resonance at low frequencies of excitation. Thus, it is possible to achieve very good isolation over a wide low-frequency band. Also, the damper force requirements for the proposed scheme are much lower than for the damper force of a skyhook configuration or a conventional linear spring with a semi-active damper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Active regions on the solar surface are known to possess magnetic helicity, which is predominantly negative in the northern hemisphere and positive in the southern hemisphere. Choudhuri et al. [Choudhuri, A.R. On the connection between mean field dynamo theory and flux tubes. Solar Phys. 215, 31–55, 2003] proposed that the magnetic helicity arises due to the wrapping up of the poloidal field of the convection zone around rising flux tubes which form active regions. Choudhuri [Choudhuri, A.R., Chatterjee, P., Nandy, D. Helicity of solar active regions from a dynamo model. ApJ 615, L57–L60, 2004] used this idea to calculate magnetic helicity from their solar dynamo model. Apart from getting broad agreements with observational data, they also predict that the hemispheric helicity rule may be violated at the beginning of a solar cycle. Chatterjee et al. [Chatterjee, P., Choudhuri, A.R., Petrovay, K. Development of twist in an emerging magnetic flux tube by poloidal field accretion. A&A 449, 781–789, 2006] study the penetration of the wrapped poloidal field into the rising flux tube due to turbulent diffusion using a simple 1-d model. They find that the extent of penetration of the wrapped field will depend on how weak the magnetic field inside the rising flux tube becomes before its emergence. They conclude that more detailed observational data will throw light on the physical conditions of flux tubes just before their emergence to the photosphere.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Owing to the lack of atmospheric vertical profile data with sufficient accuracy and vertical resolution, the response of the deep atmosphere to passage of monsoon systems over the Bay of Bengal. had not been satisfactorily elucidated. Under the Indian Climate Research Programme, a special observational programme called 'Bay of Bengal Monsoon Experiment' (BOBMEX), was conducted during July-August 1999. The present study is based on the high-resolution radiosondes launched during BOBMEX in the north Bay. Clear changes in the vertical thermal structure of the atmosphere between active and weak phases of convection have been observed. The atmosphere cooled below 6 km height and became warmer between 6 and 13 km height. The warmest layer was located between 8 and 10 km height, and the coldest layer was found just below 5 km height. The largest fluctuations in the humidity field occurred in the mid-troposphere. The observed changes between active and weak phases of convection are compared with the results from an atmospheric general circulation model, which is similar to that used at the National Centre for Medium Range Weather Forecasting, New Delhi. The model is not able to capture realistically some important features of the temperature and humidity profiles in the lower troposphere and in the boundary layer during the active and weak spells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

How does the presence of plastic active dendrites in a pyramidal neuron alter its spike initiation dynamics? To answer this question, we measured the spike-triggered average (STA) from experimentally constrained, conductance-based hippocampal neuronal models of various morphological complexities. We transformed the STA computed from these models to the spectral and the spectrotemporal domains and found that the spike initiation dynamics exhibited temporally localized selectivity to a characteristic frequency. In the presence of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, the STA characteristic frequency strongly correlated with the subthreshold resonance frequency in the theta frequency range. Increases in HCN channel density or in input variance increased the STA characteristic frequency and its selectivity strength. In the absence of HCN channels, the STA exhibited weak delta frequency selectivity and the characteristic frequency was related to the repolarization dynamics of the action potentials and the recovery kinetics of sodium channels from inactivation. Comparison of STA obtained with inputs at various dendritic locations revealed that nonspiking and spiking dendrites increased and reduced the spectrotemporal integration window of the STA with increasing distance from the soma as direct consequences of passive filtering and dendritic spike initiation, respectively. Finally, the presence of HCN channels set the STA characteristic frequency in the theta range across the somatodendritic arbor and specific STA measurements were strongly related to equivalent transfer-impedance-related measurements. Our results identify explicit roles for plastic active dendrites in neural coding and strongly recommend a dynamically reconfigurable multi-STA model to characterize location-dependent input feature selectivity in pyramidal neurons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We performed Gaussian network model based normal mode analysis of 3-dimensional structures of multiple active and inactive forms of protein kinases. In 14 different kinases, a more number of residues (1095) show higher structural fluctuations in inactive states than those in active states (525), suggesting that, in general, mobility of inactive states is higher than active states. This statistically significant difference is consistent with higher crystallographic B-factors and conformational energies for inactive than active states, suggesting lower stability of inactive forms. Only a small number of inactive conformations with the DFG motif in the ``in'' state were found to have fluctuation magnitudes comparable to the active conformation. Therefore our study reports for the first time, intrinsic higher structural fluctuation for almost all inactive conformations compared to the active forms. Regions with higher fluctuations in the inactive states are often localized to the aC-helix, aG-helix and activation loop which are involved in the regulation and/or in structural transitions between active and inactive states. Further analysis of 476 kinase structures involved in interactions with another domain/protein showed that many of the regions with higher inactive-state fluctuation correspond to contact interfaces. We also performed extensive GNM analysis of (i) insulin receptor kinase bound to another protein and (ii) holo and apo forms of active and inactive conformations followed by multi-factor analysis of variance. We conclude that binding of small molecules or other domains/proteins reduce the extent of fluctuation irrespective of active or inactive forms. Finally, we show that the perceived fluctuations serve as a useful input to predict the functional state of a kinase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hippocampal pyramidal neurons exhibit gamma-phase preference in their spikes, selectively route inputs through gamma frequency multiplexing and are considered part of gamma-bound cell assemblies. How do these neurons exhibit gamma-frequency coincidence detection capabilities, a feature that is essential for the expression of these physiological observations, despite their slow membrane time constant? In this conductance-based modelling study, we developed quantitative metrics for the temporal window of integration/coincidence detection based on the spike-triggered average (STA) of the neuronal compartment. We employed these metrics in conjunction with quantitative measures for spike initiation dynamics to assess the emergence and dependence of coincidence detection and STA spectral selectivity on various ion channel combinations. We found that the presence of resonating conductances (hyperpolarization-activated cyclic nucleotide-gated or T-type calcium), either independently or synergistically when expressed together, led to the emergence of spectral selectivity in the spike initiation dynamics and a significant reduction in the coincidence detection window (CDW). The presence of A-type potassium channels, along with resonating conductances, reduced the STA characteristic frequency and broadened the CDW, but persistent sodium channels sharpened the CDW by strengthening the spectral selectivity in the STA. Finally, in a morphologically precise model endowed with experimentally constrained channel gradients, we found that somatodendritic compartments expressed functional maps of strong theta-frequency selectivity in spike initiation dynamics and gamma-range CDW. Our results reveal the heavy expression of resonating and spike-generating conductances as the mechanism underlying the robust emergence of stratified gamma-range coincidence detection in the dendrites of hippocampal and cortical pyramidal neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several mechanisms have been proposed to explain the action of enzymes at the atomic level. Among them, the recent proposals involving short hydrogen bonds as a step in catalysis by Gerlt and Gassman [1] and proton transfer through low barrier hydrogen bonds (LBHBs) [2, 3] have attracted attention. There are several limitations to experimentally testing such hypotheses, Recent developments in computational methods facilitate the study of active site-ligand complexes to high levels of accuracy, Our previous studies, which involved the docking of the dinucleotide substrate UpA to the active site of RNase A [4, 5], enabled us to obtain a realistic model of the ligand-bound active site of RNase A. From these studies, based on empirical potential functions, we were able to obtain the molecular dynamics averaged coordinates of RNase A, bound to the ligand UpA. A quantum mechanical study is required to investigate the catalytic process which involves the cleavage and formation of covalent bonds. In the present study, we have investigated the strengths of some of the hydrogen bonds between the active site residues of RNase A and UpA at the ab initio quantum chemical level using the molecular dynamics averaged coordinates as the starting point. The 49 atom system and other model systems were optimized at the 3-21G level and the energies of the optimized systems were obtained at the 6-31G* level. The results clearly indicate the strengthening of hydrogen bonds between neutral residues due to the presence of charged species at appropriate positions. Such a strengthening manifests itself in the form of short hydrogen bonds and a low barrier for proton transfer. In the present study, the proton transfer between the 2'-OH of ribose (from the substrate) and the imidazole group from the H12 of RNase A is influenced by K41, which plays a crucial role in strengthening the neutral hydrogen bond, reducing the barrier for proton transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discharge periods of lead-acid batteries are significantly reduced at subzero centigrade temperatures. The reduction is more than what can he expected due to decreased rates of various processes caused by a lowering of temperature and occurs despite the fact that active materials are available for discharge. It is proposed that the major cause for this is the freezing of the electrolyte. The concentration of acid decreases during battery discharge with a consequent increase in the freezing temperature. A battery freezes when the discharge temperature falls below the freezing temperature. A mathematical model is developed for conditions where charge-transfer reaction is the rate-limiting step. and Tafel kinetics are applicable. It is argued that freezing begins from the midplanes of electrodes and proceeds toward the reservoir in-between. Ionic conduction stops when one of the electrodes freezes fully and the time taken to reach that point, namely the discharge period, is calculated. The predictions of the model compare well to observations made at low current density (C/5) and at -20 and -40 degrees C. At higher current densities, however, diffusional resistances become important and a more complicated moving boundary problem needs to be solved to predict the discharge periods. (C) 2009 The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonminimal coupling of a self-interacting complex scalar field with gravity is studied. For a Robertson-Walker open universe the stable solutions of the scalar-field equations are time dependent. As a result of this, a novel spontaneous symmetry breaking occurs which leads to a varying effective gravitational coupling coefficient. It is found that the coupling coefficient changes sign below a critical ‘‘radius’’ of the Universe implying the appearance of repulsive gravity. The occurrence of the repulsive interaction at an early epoch facilitates singularity avoidance. The model also provides a solution to the horizon problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Euler–Bernoulli beams are distributed parameter systems that are governed by a non-linear partial differential equation (PDE) of motion. This paper presents a vibration control approach for such beams that directly utilizes the non-linear PDE of motion, and hence, it is free from approximation errors (such as model reduction, linearization etc.). Two state feedback controllers are presented based on a newly developed optimal dynamic inversion technique which leads to closed-form solutions for the control variable. In one formulation a continuous controller structure is assumed in the spatial domain, whereas in the other approach it is assumed that the control force is applied through a finite number of discrete actuators located at predefined discrete locations in the spatial domain. An implicit finite difference technique with unconditional stability has been used to solve the PDE with control actions. Numerical simulation studies show that the beam vibration can effectively be decreased using either of the two formulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antitubercular treatment is directed against actively replicating organisms. There is an urgent need to develop drugs targeting persistent subpopulations of Mycobacterium tuberculosis. The DevR response regulator is believed to play a key role in bacterial dormancy adaptation during hypoxia. We developed a homology-based model of DevR and used it for the rational design of inhibitors. A phenylcoumarin derivative (compound 10) identified by in silico pharmacophore-based screening of 2.5 million compounds employing protocols with some novel features including a water-based pharmacophore query, was characterized further. Compound 10 inhibited DevR binding to target DNA, down-regulated dormancy genes transcription, and drastically reduced survival of hypoxic but not nutrient-starved dormant bacteria or actively growing organ ` isms. Our findings suggest that compound 10 ``locks'' DevR in an inactive conformation that is unable to bind cognate DNA and induce the dormancy regulon. These results provide proof-of-concept for DevR as a novel target to develop molecules with sterilizing activity against tubercle bacilli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a generic theory for the dynamics of a stiff filament under tension, in an active medium with orientational correlations, such as a microtubule in contractile actin. In sharp contrast to the case of a passive medium, we find the filament can stiffen, and possibly oscillate or buckle, depending on both the contractile or tensile nature of the activity and the filament-medium anchoring interaction. We also demonstrate a strong violation of the fluctuation-dissipation (FD) relation in the effective dynamics of the filament, including a negative FD ratio. Our approach is also of relevance to the dynamics of axons, and our model equations bear a remarkable formal similarity to those in recent work [Martin P, Hudspeth AJ, Juelicher F (2001) Proc Natl Acad Sci USA 98: 14380-14385] on auditory hair cells. Detailed tests of our predictions can be made by using a single filament in actomyosin extracts or bacterial suspensions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonlinear suboptimal guidance scheme is developed for the reentry phase of the reusable launch vehicles. A recently developed methodology, named as model predictive static programming (MPSP), is implemented which combines the philosophies of nonlinear model predictive control theory and approximate dynamic programming. This technique provides a finite time nonlinear suboptimal guidance law which leads to a rapid solution of the guidance history update. It does not have to suffer from computational difficulties and can be implemented online. The system dynamics is propagated through the flight corridor to the end of the reentry phase considering energy as independent variable and angle of attack as the active control variable. All the terminal constraints are satisfied. Among the path constraints, the normal load is found to be very constrictive. Hence, an extra effort has been made to keep the normal load within a specified limit and monitoring its sensitivity to the perturbation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this study is the multi-mode structural vibration control in the composite fin-tip of an aircraft. Structural model of the composite fin-tip with surface bonded piezoelectric actuators is developed using the finite element method. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes accurately. A model order reduction technique is employed for reducing the finite element structural matrices before developing the controller. Particle swarm based evolutionary optimization technique is used for optimal placement of piezoelectric patch actuators and accelerometer sensors to suppress vibration. H{infty} based active vibration controllers are designed directly in the discrete domain and implemented using dSpace® (DS-1005) electronic signal processing boards. Significant vibration suppression in the multiple bending modes of interest is experimentally demonstrated for sinusoidal and band limited white noise forcing functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A design methodology for wave-absorbing active material system is reported. The design enforces equivalence between an assumed material model having wave-absorbing behavior and a set of target feedback controllers for an array of microelectro-mechanical transducers which are integral part of the active material system. The proposed methodology is applicable to problems involving the control of acoustic waves in passive-active material system with complex constitutive behavior at different length-scales. A stress relaxation type one-dimensional constitutive model involving viscous damping mechanism is considered, which shows asymmetric wave dispersion characteristics about the half-line. The acoustic power flow and asymptotic stability of such material system are studied. A single sensor non-collocated linear feedback control system in a one-dimensional finite waveguide, which is a representative volume element in an active material system, is considered. Equivalence between the exact dynamic equilibrium of these two systems is imposed. It results in the solution space of the design variables, namely the equivalent damping coefficient, the wavelength(s) to be controlled and the location of the sensor. The characteristics of the controller transfer functions and their pole-placement problem are studied. (c) 2005 Elsevier Ltd. All rights reserved.