26 resultados para Achnanthes cf. longipes
em Indian Institute of Science - Bangalore - Índia
Resumo:
A porous carbon foam (CF) electrode modified with a reduced graphene oxide-Ag (rGO-Ag) nanocomposite has been fabricated to purify water. It can perform as an antibacterial device by killing pathogenic microbes with the aid of a 1.5 V battery, with very little power consumption. The device is recycled ten times with good performance for long term usage. It is shown that the device may be implemented as a fast water purifier to deactivate the pathogens in drinking water.
Resumo:
C17H19N302, monoclinic, P21, a = 5.382 (1), b = 17.534(4), c = 8.198(1)/L ,8 = 100.46(1) °, Z= 2, d,, = 1.323, dc= 1.299 Mg m-3, F(000) = 316, /~(Cu .Ka) = 0.618 mm -1. R = 0.052 for 1284 significant reflections. The proline-containing cispeptide unit which forms part of a six-membered ring deviates from perfect planarity. The torsion angle about the peptide bond is 3.0 (5) ° and the peptide bond length is 1.313 (5)A. The conformation of the proline ring is Cs-Cf~-endo. The crystal structure is stabilized by C-H... O interactions.
Resumo:
C17H19N302, monoclinic, P21, a = 5.382 (1), b = 17.534(4), c = 8.198(1)/L ,8 = 100.46(1) °, Z= 2, d,, = 1.323, dc= 1.299 Mg m-3, F(000) = 316, /~(Cu .Ka) = 0.618 mm -1. R = 0.052 for 1284 significant reflections. The proline-containing cispeptide unit which forms part of a six-membered ring deviates from perfect planarity. The torsion angle about the peptide bond is 3.0 (5) ° and the peptide bond length is 1.313 (5)A. The conformation of the proline ring is Cs-Cf~-endo. The crystal structure is stabilized by C-H... O interactions.
Resumo:
(I): M r = 258.34, triclinic, Pi, a = 9.810 (3), b=9.635(3), e=15.015(4)A, a=79.11(2), #= 102.38 (3), y = 107.76 (3) o, V= 1308.5 A 3, Z = 4, Din= 1.318 (3) (by flotation in KI solution), D x = 1.311 g cm -3, Cu Ka, 2 = 1.5418/~, g = 20-05 cm -1, F(000) = 544, T---- 293 K, R = 0.074 for 2663 reflections. (II): M r = 284.43, monoclinic, P2~/c, a= 17.029 (5), b=6.706 (5), c= 14.629 (4), t= 113.55 (2) ° , V=1531.4A 3, Z=4, Dm=1.230(5) (by flotation in KI solution), Dx= 1.234gem -3, Mo Ka, 2 = 0.7107 A, g = 1.63 cm-1; F(000) = 608, T= 293 K, R = 0.062 for 855 reflections. The orientation of the C=S chromophores in the crystal lattice and their reactivity in the crystalline state are discussed. The C--S bonds are much shorter than the normal bond length [1.605 (4) (I), 1.665 (8) A (II) cf. 1.71 A].
Resumo:
series of thiosugar derivatives (thiolevomannosans) derived from mannose were synthesized and their inhibitory activity was tested against alpha-mannosidase (jack bean). These inhibitors were found to be more potent than the well-known inhibitors like kifunensine and deoxymannojirimycin based on docking and biochemical studies. The sulfone derivative 10 was shown to be the best inhibitor of alpha-mannosidase with the K-i value of 350 nM. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In wireless ad hoc networks, nodes communicate with far off destinations using intermediate nodes as relays. Since wireless nodes are energy constrained, it may not be in the best interest of a node to always accept relay requests. On the other hand, if all nodes decide not to expend energy in relaying, then network throughput will drop dramatically. Both these extreme scenarios (complete cooperation and complete noncooperation) are inimical to the interests of a user. In this paper, we address the issue of user cooperation in ad hoc networks. We assume that nodes are rational, i.e., their actions are strictly determined by self interest, and that each node is associated with a minimum lifetime constraint. Given these lifetime constraints and the assumption of rational behavior, we are able to determine the optimal share of service that each node should receive. We define this to be the rational Pareto optimal operating point. We then propose a distributed and scalable acceptance algorithm called Generous TIT-FOR-TAT (GTFT). The acceptance algorithm is used by the nodes to decide whether to accept or reject a relay request. We show that GTFT results in a Nash equilibrium and prove that the system converges to the rational and optimal operating point.
Resumo:
This paper is concerned with a study of some of the properties of locally product and almost locally product structures on a differentiable manifold X n of class C k . Every locally product space has certain almost locally product structures which transform the local tangent space to X n at an arbitrary point P in a set fashion: this is studied in Theorem (2.2). Theorem (2.3) considers the nature of transformations that exist between two co-ordinate systems at a point whenever an almost locally product structure has the same local representation in each of these co-ordinate systems. A necessary and sufficient condition for X n to be a locally product manifold is obtained in terms of the pseudo-group of co-ordinate transformations on X n and the subpseudo-groups [cf., Theoren (2.1)]. Section 3 is entirely devoted to the study of integrable almost locally product structures.
Resumo:
Imagining a disturbance made on a compressible boundary layer with the help of a heat source, the critical viscous sublayer, through which the skin friction at any point on a surface is connected with the heat transferred from a heated element embedded in it, has been estimated. Under similar conditions of external flow (Ray1)) the ratio of the critical viscous sublayer to the undisturbed boundary layer thickness is about one-tenth in the laminar case and one hundredth in the turbulent case. These results are similar to those (cf.1)) found in shock wave boundary layer interaction problems.
Resumo:
dThe work looks at the response to three-point loading of carbon-epoxy (CF-EP) composites with inserted buffer strip (BS) material. Short beam Shear tests were performed to study the load-deflection response as well as fracture features through macroscopy on the CF-EP system containing the interleaved PTFE-coated fabric material. Significant differences were noticed in the response of the CF-EP system to the bending process consequent to the architectural modification. It was inferred that introduction of small amounts of less adherent layers of material at specific locations causes a decrement in the load carrying capability. Further the number and the ease with which interface separation occurs is found to depend on the extent to which the inserted layer is present in either single or multiple layer positions.
Resumo:
Using ab initio methods we have investigated the fluorination of graphene and find that different stoichiometric phases can be formed without a nucleation barrier, with the complete “2D-Teflon” CF phase being thermodynamically most stable. The fluorinated graphene is an insulator and turns out to be a perfect matrix-host for patterning nanoroads and quantum dots of pristine graphene. The electronic and magnetic properties of the nanoroads can be tuned by varying the edge orientation and width. The energy gaps between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO) of quantum dots are size-dependent and show a confinement typical of Dirac fermions. Furthermore, we study the effect of different basic coverage of F on graphene (with stoichiometries CF and C4F) on the band gaps, and show the suitability of these materials to host quantum dots of graphene with unique electronic properties.
Resumo:
A new feature-based technique is introduced to solve the nonlinear forward problem (FP) of the electrical capacitance tomography with the target application of monitoring the metal fill profile in the lost foam casting process. The new technique is based on combining a linear solution to the FP and a correction factor (CF). The CF is estimated using an artificial neural network (ANN) trained using key features extracted from the metal distribution. The CF adjusts the linear solution of the FP to account for the nonlinear effects caused by the shielding effects of the metal. This approach shows promising results and avoids the curse of dimensionality through the use of features and not the actual metal distribution to train the ANN. The ANN is trained using nine features extracted from the metal distributions as input. The expected sensors readings are generated using ANSYS software. The performance of the ANN for the training and testing data was satisfactory, with an average root-mean-square error equal to 2.2%.
Resumo:
Animals communicate in non-ideal and noisy conditions. The primary method they use to improve communication efficiency is sender-receiver matching: the receiver's sensory mechanism filters the impinging signal based on the expected signal. In the context of acoustic communication in crickets, such a match is made in the frequency domain. The males broadcast a mate attraction signal, the calling song, in a narrow frequency band centred on the carrier frequency (CF), and the females are most sensitive to sound close to this frequency. In tree crickets, however, the CF changes with temperature. The mechanisms used by female tree crickets to accommodate this change in CF were investigated at the behavioural and biomechanical level. At the behavioural level, female tree crickets were broadly tuned and responded equally to CFs produced within the naturally occurring range of temperatures (18 to 27 degrees C). To allow such a broad response, however, the transduction mechanisms that convert sound into mechanical and then neural signals must also have a broad response. The tympana of the female tree crickets exhibited a frequency response that was even broader than suggested by the behaviour. Their tympana vibrate with equal amplitude to frequencies spanning nearly an order of magnitude. Such a flat frequency response is unusual in biological systems and cannot be modelled as a simple mechanical system. This feature of the tree cricket auditory system not only has interesting implications for mate choice and species isolation but may also prove exciting for bio-mimetic applications such as the design of miniature low frequency microphones.
Resumo:
Experiments on reverse transition were conducted in two-dimensional accelerated incompressible turbulent boundary layers. Mean velocity profiles, longitudinal velocity fluctuations $\tilde{u}^{\prime}(=(\overline{u^{\prime 2}})^{\frac{1}{2}})$ and the wall-shearing stress (TW) were measured. The mean velocity profiles show that the wall region adjusts itself to laminar conditions earlier than the outer region. During the reverse transition process, increases in the shape parameter (H) are accompanied by a decrease in the skin friction coefficient (Cf). Profiles of turbulent intensity (u’2) exhibit near similarity in the turbulence decay region. The breakdown of the law of the wall is characterized by the parameter \[ \Delta_p (=\nu[dP/dx]/\rho U^{*3}) = - 0.02, \] where U* is the friction velocity. Downstream of this region the decay of $\tilde{u}^{\prime}$ fluctuations occurred when the momentum thickness Reynolds number (R) decreased roughly below 400.
Resumo:
Multiple Clock Domain processors provide an attractive solution to the increasingly challenging problems of clock distribution and power dissipation. They allow their chips to be partitioned into different clock domains, and each domain’s frequency (voltage) to be independently configured. This flexibility adds new dimensions to the Dynamic Voltage and Frequency Scaling problem, while providing better scope for saving energy and meeting performance demands. In this paper, we propose a compiler directed approach for MCD-DVFS. We build a formal petri net based program performance model, parameterized by settings of microarchitectural components and resource configurations, and integrate it with our compiler passes for frequency selection.Our model estimates the performance impact of a frequency setting, unlike the existing best techniques which rely on weaker indicators of domain performance such as queue occupancies(used by online methods) and slack manifestation for a particular frequency setting (software based methods).We evaluate our method with subsets of SPECFP2000,Mediabench and Mibench benchmarks. Our mean energy savings is 60.39% (versus 33.91% of the best software technique)in a memory constrained system for cache miss dominated benchmarks, and we meet the performance demands.Our ED2 improves by 22.11% (versus 18.34%) for other benchmarks. For a CPU with restricted frequency settings, our energy consumption is within 4.69% of the optimal.