500 resultados para ASSEMBLY DYNAMICS

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A perturbation of FtsZ assembly dynamics has been shown to inhibit bacterial cytokinesis. In this study, the antibacterial activity of 151 rhodanine compounds was assayed using Bacillus subtilis cells. Of 151 compounds, eight strongly inhibited bacterial proliferation at 2 mu M. Subsequently, we used the elongation of B. subtilis cells as a secondary screen to identify potential FtsZ-targeted antibacterial agents. We found that three compounds significantly increased bacterial cell length. One of the three compounds, namely, CCR-11 (E)-2-thioxo-5-({3-(trifluoromethyl)phenyl]furan-2-yl}methylene) thiazolidin-4-one], inhibited the assembly and GTPase activity of FtsZ in vitro. CCR-11 bound to FtsZ with a dissociation constant of 1.5 +/- 0.3 mu M. A docking analysis indicated that CCR-11 may bind to FtsZ in a cavity adjacent to the T7 loop and that short halogen oxygen, H-bonding, and hydrophobic interactions might be important for the binding of CCR-11 with FtsZ. CCR-11 inhibited the proliferation of B. subtilis cells with a half-maximal inhibitory concentration (IC50) of 1.2 +/- 0.2 mu M and a minimal inhibitory concentration of 3 mu M. It also potently inhibited proliferation of Mycobacterium smegmatis cells. Further, CCR-11 perturbed Z-ring formation in B. subtilis cells; however, it neither visibly affected nucleoid segregation nor altered the membrane integrity of the cells. CCR-11 inhibited HeLa cell proliferation with an IC50 value of 18.1 +/- 0.2,mu M (similar to 15 x IC50 of B. subtilis cell proliferation). The results suggested that CCR-11 inhibits bacterial cytokinesis by inhibiting FtsZ assembly, and it can be used as a lead molecule to develop FtsZ-targeted antibacterial agents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ultrathin films at fluid interfaces are important not only from a fundamental point of view as 2D complex fluids but have also become increasingly relevant in the development of novel functional materials. There has been an explosion in the synthesis work in this area over the last decade, giving rise to many exotic nanostructures at fluid interfaces. However, the factors controlling particle nucleation, growth and self-assembly at interfaces are poorly understood on a quantitative level. We will outline some of the recent attempts in this direction. Some of the selected investigations examining the macroscopic mechanical properties of molecular and particulate films at fluid interfaces will be reviewed. We conclude with a discussion of the electronic properties of these films that have potential technological and biological applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As the beneficial effects of curcumin have often been reported to be limited to its small concentrations, we have undertaken a study to find the aggregation properties of curcumin in water by varying the number of monomers. Our molecular dynamics simulation results show that the equilibrated structure is always an aggregated state with remarkable structural rearrangements as we vary the number of curcumin monomers from 4 to 16 monomers. We find that the curcumin monomers form clusters in a very definite pattern where they tend to aggregate both in parallel and anti-parallel orientation of the phenyl rings, often seen in the formation of beta-sheet in proteins. A considerable enhancement in the population of parallel alignments is observed with increasing the system size from 12 to 16 curcumin monomers. Due to the prevalence of such parallel alignment for large system size, a more closely packed cluster is formed with maximum number of hydrophobic contacts. We also follow the pathway of cluster growth, in particular the transition from the initial segregated to the final aggregated state. We find the existence of a metastable structural intermediate involving a number of intermediate-sized clusters dispersed in the solution. We have constructed a free energy landscape of aggregation where the metatsable state has been identified. The course of aggregation bears similarity to nucleation and growth in highly metastable state. The final aggregated form remains stable with the total exclusion of water from its sequestered hydrophobic core. We also investigate water structure near the cluster surface along with their orientation. We find that water molecules form a distorted tetrahedral geometry in the 1st solvation layer of the cluster, interacting rather strongly with the hydrophilic groups at the surface of the curcumin. The dynamics of such quasi-bound water molecules near the surface of curcumin cluster is considerably slower than the bulk signifying a restricted motion as often found in protein hydration layer. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At the heart of understanding cellular processes lies our ability to explore the specific nature of communication between sequential information carrying biopolymers. However, the data extracted from conventional solution phase studies may not reflect the dynamics of communication between recognized partners as they occur in the crowded cellular milieu. We use the principle of immobilization of histidine-tagged biopolymers at a Ni(II)-encoded Langmuir monolayer to study sequence-specific protein-protein interactions in an artificially crowded environment The advantage of this technique lies in increasing the surface density of one of the interacting partners that allows us to study macromolecular interactions in a controlled crowded environment, but without compromising the speed of the reactions. We have taken advantage of this technique to follow the sequential assembly process of the multiprotein complex Escherichia coil RNA polymerase at the interface and also deciphered the role of one of the proteins, omega (omega), in the assembly pathway. Our reconstitution studies indicate that in the absence of molecular chaperones or other cofactors, omega (omega) plays a decisive role in refolding the largest protein beta prime (beta') and its recruitment into the multimeric assembly to reconstitute an active RNA polymerase. It was also observed that the monolayer had the ability to distinguish between sequence-specific and -nonspecific interactions despite the immobilization of one of the biomacromolecules. The technique provides a universal two-dimensional template for studying protein-ligand interactions while mimicking molecular crowding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hydrothermal reaction of a mixture of cobalt salt, 5-nitro isophthalic acid and triazole (compound I), 3-aminotriazole (3-AT) (compound II) and 3,5-diaminotriazole (compound III) at 220 degrees C for a day resulted in the isolation of three different, but related, compounds containing cobalt clusters. The three-dimensional compounds have Co-5 (compound-I) and Co-4 (compound-II and compound-III) clusters connected through the carboxylate and triazolate forming structures with pcu net (compound-I and compound-II) and a graphite-related net (compound-III). The water molecules (coordinated and lattice) can be readily re-adsorbed by the structure of compound-I, whereas the removal of the water molecule leads to a collapse of the structures of compound-II and compound-III. The TGA studies suggest the possibility of an intermediate structure for compound-1, which was investigated using in situ single crystal to single crystal (SCSC) transformations. The identification of an intermediate structure during the dehydration/hydration cycle in compound-I is important and provides important pointers about the dynamics of the water molecules in these compounds. Compound-I was also investigated in detail using a variety of spectroscopic techniques such as IR, UV-Vis spectroscopy etc. Magnetic studies on the synthesized compounds indicate anti-ferromagnetic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The roles of myosin during muscle contraction are well studied, but how different domains of this protein are involved in myofibril assembly in vivo is far less understood. The indirect flight muscles (IFMs) of Drosophila melanogaster provide a good model for understanding muscle development and function in vivo. We show that two missense mutations in the rod region of the myosin heavy-chain gene, Mhc, give rise to IFM defects and abnormal myofibrils. These defects likely result from thick filament abnormalities that manifest during early sarcomere development or later by hypercontraction. The thick filament defects are accompanied by marked reduction in accumulation of flightin, a myosin binding protein, and its phosphorylated forms, which are required to stabilise thick filaments. We investigated with purified rod fragments whether the mutations affect the coiled-coil structure, rod aggregate size or rod stability. No significant changes in these parameters were detected, except for rod thermodynamic stability in one mutation. Molecular dynamics simulations suggest that these mutations may produce localised rod instabilities. We conclude that the aberrant myofibrils are a result of thick filament defects, but that these in vivo effects cannot be detected in vitro using the biophysical techniques employed. The in vivo investigation of these mutant phenotypes in IFM development and function provides a useful platform for studying myosin rod and thick filament formation generically, with application to the aetiology of human myosin rod myopathies. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using cell based screening assay, we identified a novel anti-tubulin agent (Z)-5-((5-(4-bromo-3-chlorophenyl)furan-2-yl)methylene)-2-thioxothiazoli din-4-one (BCFMT) that inhibited proliferation of human cervical carcinoma (HeLa) (IC50, 7.2 +/- 1.8 mu M), human breast adenocarcinoma (MCF-7) (IC50, 10.0 +/- 0.5 mu M), highly metastatic breast adenocarcinoma (MDA-MB-231) (IC50, 6.0 +/- 1 mu M), cisplatin-resistant human ovarian carcinoma (A2780-cis) (IC50, 5.8 +/- 0.3 mu M) and multi-drug resistant mouse mammary tumor (EMT6/AR1) (IC50, 6.5 +/- 1 mu M) cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 mu M), BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably) state by 135% and reduced the dynamicity (dimer exchange per unit time) of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 +/- 1.8 mu M, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K-i) of 5.2 +/- 1.5 mu M suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2) at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug resistance cells by suppressing microtubule dynamics and indicated that the compound may have chemotherapeutic potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pore-forming toxins are known for their ability to efficiently form transmembrane pores which eventually leads to cell lysis. The dynamics of lysis and underlying self-assembly or oligomerization pathways leading to pore formation are incompletely understood. In this manuscript the pore-forming kinetics and lysis dynamics of Cytolysin-A (ClyA) toxins on red blood cells (RBCs) are quantified and compared with experimental lysis data. Lysis experiments are carried out on a fixed mass of RBCs, under isotonic conditions in phosphate-buffered saline, for different initial toxin concentrations ranging from 2.94-14.7 nM. Kinetic models which account for monomer binding, conformation and oligomerization to form the dodecameric ClyA pore complex are developed and lysis is assumed to occur when the number of pores per RBC (n(p)) exceeds a critical number, n(pc). By analysing the model in a sublytic regime (n(p) < n(pc)) the number of pores per RBC to initiate lysis is found to lie between 392 and 768 for the sequential oligomerization mechanism and between 5300 and 6300 for the non-sequential mechanism. Rupture rates which are first order in the number of RBCs are seen to provide the best agreement with the lysis experiments. The time constants for pore formation are estimated to lie between 1 and 20 s and monomer conformation time scales were found to be 2-4 times greater than the oligomerization times. Cell rupture takes places in 100s of seconds, and occurs predominantly with a steady number of pores ranging from 515 to 11 000 on the RBC surface for the sequential mechanism. Both the sequential irreversible and non-sequential kinetics provide similar predictions of the hemoglobin release dynamics, however the hemoglobin released as a function of the toxin concentration was accurately captured only with the sequential model. Each mechanism develops a distinct distribution of mers on the surface, providing a unique experimentally observable fingerprint to identify the underlying oligomerization pathways. Our study offers a method to quantify the extent and dynamics of lysis which is an important aspect of developing novel drug and gene delivery strategies based on pore-forming toxins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report DNA assisted self-assembly of polyamidoamine (PAMAM) dendrimers using all atom Molecular Dynamics (MD) simulations and present a molecular level picture of a DNA-linked PAMAM dendrimer nanocluster, which was first experimentally reported by Choi et al. (Nano Lett., 2004, 4, 391-397). We have used single stranded DNA (ssDNA) to direct the self-assembly process. To explore the effect of pH on this mechanism, we have used both the protonated (low pH) and nonprotonated (high pH) dendrimers. In all cases studied here, we observe that the DNA strand on one dendrimer unit drives self-assembly as it binds to the complementary DNA strand present on the other dendrimer unit, leading to the formation of a DNA-linked dendrimer dimeric complex. However, this binding process strongly depends on the charge of the dendrimer and length of the ssDNA. We observe that the complex with a nonprotonated dendrimer can maintain a DNA length dependent inter-dendrimer distance. In contrast, for complexes with a protonated dendrimer, the inter-dendrimer distance is independent of the DNA length. We attribute this observation to the electrostatic complexation of a negatively charged DNA strand with the positively charged protonated dendrimer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembly of nano sized particles during natural drying causes agglomeration and shell formation at the surface of micron sized droplets. The shell undergoes sol-gel transition leading to buckling at the weakest point on the surface and produces different types of structures. Manipulation of the buckling rate with inclusion of surfactant (sodium dodecyl sulphate, SDS) and salt (anilinium hydrochloride, AHC) to the nano-sized particle dispersion (nanosilica) is reported here in an acoustically levitated single droplet. Buckling in levitated droplets is a cumulative, complicated function of acoustic streaming, chemistry, agglomeration rate, porosity, radius of curvature, and elastic energy of shell. We put forward our hypothesis on how buckling occurs and can be suppressed during natural drying of the droplets. Global precipitation of aggregates due to slow drying of surfactant-added droplets (no added salts) enhances the rigidity of the shell formed and hence reduces the buckling probability of the shell. On the contrary, adsorption of SDS aggregates on salt ions facilitates the buckling phenomenon with an addition of minute concentration of the aniline salt to the dispersion. Variation in the concentration of the added particles (SDS/AHC) also leads to starkly different morphologies and transient behaviour of buckling (buckling modes like paraboloid, ellipsoid, and buckling rates). Tuning of the buckling rate causes a transition in the final morphology from ring and bowl shapes to cocoon type of structure. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that a film of a suspension of polymer grafted nanoparticles on a liquid substrate can be employed to create two-dimensional nanostructures with a remarkable variation in the pattern length scales. The presented experiments also reveal the emergence of concentration-dependent bimodal patterns as well as re-entrant behaviour that involves length scales due to dewetting and compositional instabilities. The experimental observations are explained through a gradient dynamics model consisting of coupled evolution equations for the height of the suspension film and the concentration of polymer. Using a Flory-Huggins free energy functional for the polymer solution, we show in a linear stability analysis that the thin film undergoes dewetting and/or compositional instabilities depending on the concentration of the polymer in the solution. We argue that the formation via `hierarchical self-assembly' of various functional nanostructures observed in different systems can be explained as resulting from such an interplay of instabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study on self-assembly of anisotropically substituted penta-aryl fullerenes in water has been reported. The penta-phenol-substituted amphiphilic fullerene derivative C60Ph5(OH)(5)],exhibited self-assembled vesicular nanostructures in water under the experimental conditions. The size of the vesicles Was observed to depend upon the kinetics of self-assembly and could be varied from similar to 300 to similar to 70 nm. Our mechanistic study indicated that the self-assembly of C60Ph5(OH)(5) is driven by extensive intermolecular as well as water-mediated hydrogen :bonding along with fullerene-fullerene hydrophobic interaction in water. The cumulative effect of these interactions is responsible for the stability of vesicular structures even on the removal of solvent. The substitution of phenol with anisole resulted in different packing and interaction of the fullerene derivative, as Indicated in the molecular dynamics studies, thus resulting in different self-assembled nanostructures. The hollow vesicles were further encapsulated with a hydrophobic conjugated polymer and water-soluble dye as guest molecules. Such confinement of pi-conjugated polymers in fullerene has significance in bulk heterojunction devices for efficient exciton diffusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the phenomenon of self-organized criticality (SOC) in a simple random walk model described by a random walk of a myopic ant, i.e., a walker who can see only nearest neighbors. The ant acts on the underlying lattice aiming at uniform digging, i.e., reduction of the height profile of the surface but is unaffected by the underlying lattice. In one, two, and three dimensions we have explored this model and have obtained power laws in the time intervals between consecutive events of "digging." Being a simple random walk, the power laws in space translate to power laws in time. We also study the finite size scaling of asymptotic scale invariant process as well as dynamic scaling in this system. This model differs qualitatively from the cascade models of SOC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on spectroscopic studies of the chiral structure in phospholipid tubules formed in mixtures of alcohol and water. Synthetic phospholipids containing diacetylenic moieties in the acyl chains self-assemble into hollow, cylindrical tubules in appropriate conditions. Circular dichroism provides a direct measure of chirality of the molecular structure. We find that the CD spectra of tubules formed in mixtures of alcohol and water depends strongly on the alcohol used and the lipid concentration. The relative spectral intensity of different circular dichroism bands correlates with the number of bilayers observed using microscopy. The results provide experimental evidence that tubule formation is based on chiral packing of the lipid molecules and that interbilayer interactions are important to the tubule structure