4 resultados para ASS

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The total solids of samples of ass's milk ranged from 7·80 to 9·10, the solids-not-fat from 7·14 to 8·50, and the fat from 0·54 to 0·71%. The nitrogen distribution in ass's milk is: casein 39·5, albumin 35·0, globulin 2·7 and non-protein nitrogen 22·8% of the total nitrogen. Ass's milk contains: casein 0·70, albumin 0·62 and globulin 0·07%. The total protein content is 1·39%. Ass's milk is therefore characterized by a low casein, a low globulin and a high albumin content. The non-protein nitrogen consists of amino nitrogen 8·1, urea nitrogen 24·3 and uric acid 0·7 mg./100 ml. of milk. The urea content is twice that present in cow's milk. The mean chloride and lactose contents of the milk samples are 0·037 and 6·1% respectively. The average calcium and phosphorus content of ass's milk are 0·081 and 0·059% respectively. Half the calcium is ionic, and half is in colloidal form. The phosphorus distribution is: total acid soluble 84·0, acid soluble organic 38·5, easily hydrolysable ester 27·4, inorganic 46·0, and colloidal inorganic 23·0 % of the total phosphorus. The ratio of CaO: P2O5 is 1:1. 46 % of the total phosphorus is in ester form; this is high when compared with only 12 % in cow's milk; most of the phosphoric ester forms soluble barium salts, which is a distinguishing feature of ass's milk. The total sulphur content is 15·8 mg./100 ml. The fat has a penetrating odour and is coloured orange-yellow. It has an iodine value of about 86, which is much higher than that for human milk fat. The Reichert (9·5) and Kirschner values (5·7) are low. In general, the composition of ass's milk resembles that of human rather than of cow's milk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants as well as well-known carcinogens. Therefore, it is important to develop an effective receptor for the detection and quantification of such molecules in solution. In view of this, a 1,3-dinaphthalimide derivative of calix4]arene (L) has been synthesized and characterized, and the structure has been established by single crystal XRD. In the crystal lattice, intermolecular arm-to-arm pi center dot center dot center dot pi overlap dominates and thus L becomes a promising receptor for providing interactions with the aromatic species in solution, which can be monitored by following the changes that occur in its fluorescence and absorption spectra. On the basis of the solution studies carried out with about 17 derivatives of the aromatic guest molecular systems, it may be concluded that the changes that occur in the fluorescence intensity seem to be proportional to the number of aromatic rings present and thus proportional to the extent of pi center dot center dot center dot pi interaction present between the naphthalimide moieties and the aromatic portion of the guest molecule. Though the nonaromatic portion of the guest species affects the fluorescence quenching, the trend is still based on the number of rings present in these. Four guest aldehydes are bound to L with K-ass of 2000-6000 M-1 and their minimum detection limit is in the range of 8-35 mu M. The crystal structure of a naphthaldehyde complex, L.2b, exhibits intermolecular arm-to-arm as well as arm-to-naphthaldehyde pi center dot center dot center dot pi interactions. Molecular dynamics studies of L carried out in the presence of aromatic aldehydes under vacuum as well as in acetonitrile resulted in exhibiting interactions observed in the solid state and hence the changes observed in the fluorescence and absorption spectra are attributable for such interactions. Complex formation has also been delineated through ESI MS studies. Thus L is a promising receptor that can recognize PAHs by providing spectral changes proportional to the aromatic conjugation of the guest and the extent of aromatic pi center dot center dot center dot pi interactions present between L and the guest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the kinetics of photoinduced effects in nanolayered Se/As2S3 film by in situ optical absorption measurements, which reveal that photodarkening in these films is followed by photoinduced diffusion. An increase in disorder during photodarkening and its subsequent decrease during photoinduced diffusion were also observed. The observation of photodarkening of Se at room temperature when confined between As2S3 layers suggests that the glass transition temperature of Se shifts to higher energy. The analysis shows that the atoms which take part in photodarkening play a vital role in photoinduced diffusion. The x-ray photoelectron spectroscopy measurements show the atomic movements during photoinduced diffusion. It also shows that some of the As–S bonds are converted into As–Se bonds. Since it is energetically difficult to break an As–S bond to form an As–Se bond, we assume that the new bond formations are taking place by the bond rearrangement mechanism.