39 resultados para ARTIFACTS
em Indian Institute of Science - Bangalore - Índia
Resumo:
Artifacts in the form of cross peaks have been observed along two- and three-quantum diagonals in single-quantum two-dimensional correlated (COSY) spectra of several peptides and oligonucleotides. These have been identified as due to the presence of a non-equilibrium state of kind I (a state describable by populations which differ from equilibrium) of strongly coupled spins carried over from one experiment to the next in the COSY algorithm.
Resumo:
One of the most important applications of adaptive systems is in noise cancellation using adaptive filters. Ln this paper, we propose adaptive noise cancellation schemes for the enhancement of EEG signals in the presence of EOG artifacts. The effect of two reference inputs is studied on simulated as well as recorded EEG signals and it is found that one reference input is enough to get sufficient minimization of EOG artifacts. This has been verified through correlation analysis also. We use signal to noise ratio and linear prediction spectra, along with time plots, for comparing the performance of the proposed schemes for minimizing EOG artifacts from contaminated EEG signals. Results show that the proposed schemes are very effective (especially the one which employs Newton's method) in minimizing the EOG artifacts from contaminated EEG signals.
Resumo:
EEG recordings are often contaminated with ocular artifacts such as eye blinks and eye movements. These artifacts may obscure underlying brain activity in the electroencephalogram (EEG) data and make the analysis of the data difficult. In this paper, we explore the use of empirical mode decomposition (EMD) based filtering technique to correct the eye blinks and eye movementartifacts in single channel EEG data. In this method, the single channel EEG data containing ocular artifact is segmented such that the artifact in each of the segment is considered as some type of slowly varying trend in the dataand the EMD is used to remove the trend. The filtering is done using partial reconstruction from components of the decomposition. The method is completely data dependent and hence adaptive and nonlinear. Experimental results are provided to check the applicability of the method on real EEG data and the results are quantified using power spectral density (PSD) as a measure. The method has given fairlygood results and does not make use of any preknowledge of artifacts or the EEG data used.
Resumo:
In this paper, expressions for convolution multiplication properties of DCT IV and DST IV are derived starting from equivalent DFT representations. Using these expressions methods for implementing linear filtering through block convolution in the DCT IV and DST IV domain are proposed. Techniques developed for DCT IV and DST IV are further extended to MDCT and MDST where the filter implementation is near exact for symmetric filters and approximate for non-symmetric filters. No additional overlapping is required for implementing the symmetric filtering in the MDCT domain and hence the proposed algorithm is computationally competitive with DFT based systems. Moreover, inherent 50% overlap between the adjacent frames used for MDCT/MDST domain reduces the blocking artifacts due to block processing or quantization. The techniques are computationally efficient for symmetric filters and provides a new alternative to DFT based convolution.
Resumo:
Lateral or transaxial truncation of cone-beam data can occur either due to the field of view limitation of the scanning apparatus or iregion-of-interest tomography. In this paper, we Suggest two new methods to handle lateral truncation in helical scan CT. It is seen that reconstruction with laterally truncated projection data, assuming it to be complete, gives severe artifacts which even penetrates into the field of view. A row-by-row data completion approach using linear prediction is introduced for helical scan truncated data. An extension of this technique known as windowed linear prediction approach is introduced. Efficacy of the two techniques are shown using simulation with standard phantoms. A quantitative image quality measure of the resulting reconstructed images are used to evaluate the performance of the proposed methods against an extension of a standard existing technique.
Resumo:
We explore the application of pseudo time marching schemes, involving either deterministic integration or stochastic filtering, to solve the inverse problem of parameter identification of large dimensional structural systems from partial and noisy measurements of strictly static response. Solutions of such non-linear inverse problems could provide useful local stiffness variations and do not have to confront modeling uncertainties in damping, an important, yet inadequately understood, aspect in dynamic system identification problems. The usual method of least-square solution is through a regularized Gauss-Newton method (GNM) whose results are known to be sensitively dependent on the regularization parameter and data noise intensity. Finite time,recursive integration of the pseudo-dynamical GNM (PD-GNM) update equation addresses the major numerical difficulty associated with the near-zero singular values of the linearized operator and gives results that are not sensitive to the time step of integration. Therefore, we also propose a pseudo-dynamic stochastic filtering approach for the same problem using a parsimonious representation of states and specifically solve the linearized filtering equations through a pseudo-dynamic ensemble Kalman filter (PD-EnKF). For multiple sets of measurements involving various load cases, we expedite the speed of thePD-EnKF by proposing an inner iteration within every time step. Results using the pseudo-dynamic strategy obtained through PD-EnKF and recursive integration are compared with those from the conventional GNM, which prove that the PD-EnKF is the best performer showing little sensitivity to process noise covariance and yielding reconstructions with less artifacts even when the ensemble size is small.
Resumo:
We explore the application of pseudo time marching schemes, involving either deterministic integration or stochastic filtering, to solve the inverse problem of parameter identification of large dimensional structural systems from partial and noisy measurements of strictly static response. Solutions of such non-linear inverse problems could provide useful local stiffness variations and do not have to confront modeling uncertainties in damping, an important, yet inadequately understood, aspect in dynamic system identification problems. The usual method of least-square solution is through a regularized Gauss-Newton method (GNM) whose results are known to be sensitively dependent on the regularization parameter and data noise intensity. Finite time, recursive integration of the pseudo-dynamical GNM (PD-GNM) update equation addresses the major numerical difficulty associated with the near-zero singular values of the linearized operator and gives results that are not sensitive to the time step of integration. Therefore, we also propose a pseudo-dynamic stochastic filtering approach for the same problem using a parsimonious representation of states and specifically solve the linearized filtering equations through apseudo-dynamic ensemble Kalman filter (PD-EnKF). For multiple sets ofmeasurements involving various load cases, we expedite the speed of the PD-EnKF by proposing an inner iteration within every time step. Results using the pseudo-dynamic strategy obtained through PD-EnKF and recursive integration are compared with those from the conventional GNM, which prove that the PD-EnKF is the best performer showing little sensitivity to process noise covariance and yielding reconstructions with less artifacts even when the ensemble size is small. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
For structured-light scanners, the projective geometry between a projector-camera pair is identical to that of a camera-camera pair. Consequently, in conjunction with calibration, a variety of geometric relations are available for three-dimensional Euclidean reconstruction. In this paper, we use projector-camera epipolar properties and the projective invariance of the cross-ratio to solve for 3D geometry. A key contribution of our approach is the use of homographies induced by reference planes, along with a calibrated camera, resulting in a simple parametric representation for projector and system calibration. Compared to existing solutions that require an elaborate calibration process, our method is simple while ensuring geometric consistency. Our formulation using the invariance of the cross-ratio is also extensible to multiple estimates of 3D geometry that can be analysed in a statistical sense. The performance of our system is demonstrated on some cultural artifacts and geometric surfaces.
Resumo:
In this paper, we present two new filtered backprojection (FBP) type algorithms for cylindrical detector helical cone-beam geometry with no position dependent backprojection weight. The algorithms are extension of the recent exact Hilbert filtering based 2D divergent beam reconstruction with no backprojection weight to the FDK type algorithm for reconstruction in 3D helical trajectory cone-beam tomography. The two algorithms named HFDK-W1 and HFDK-W2 result in better image quality, noise uniformity, lower noise and reduced cone-beam artifacts.
Resumo:
In positron emission tomography (PET), image reconstruction is a demanding problem. Since, PET image reconstruction is an ill-posed inverse problem, new methodologies need to be developed. Although previous studies show that incorporation of spatial and median priors improves the image quality, the image artifacts such as over-smoothing and streaking are evident in the reconstructed image. In this work, we use a simple, yet powerful technique to tackle the PET image reconstruction problem. Proposed technique is based on the integration of Bayesian approach with that of finite impulse response (FIR) filter. A FIR filter is designed whose coefficients are determined based on the surface diffusion model. The resulting reconstructed image is iteratively filtered and fed back to obtain the new estimate. Experiments are performed on a simulated PET system. The results show that the proposed approach is better than recently proposed MRP algorithm in terms of image quality and normalized mean square error.
Resumo:
The neural network finds its application in many image denoising applications because of its inherent characteristics such as nonlinear mapping and self-adaptiveness. The design of filters largely depends on the a-priori knowledge about the type of noise. Due to this, standard filters are application and image specific. Widely used filtering algorithms reduce noisy artifacts by smoothing. However, this operation normally results in smoothing of the edges as well. On the other hand, sharpening filters enhance the high frequency details making the image non-smooth. An integrated general approach to design a finite impulse response filter based on principal component neural network (PCNN) is proposed in this study for image filtering, optimized in the sense of visual inspection and error metric. This algorithm exploits the inter-pixel correlation by iteratively updating the filter coefficients using PCNN. This algorithm performs optimal smoothing of the noisy image by preserving high and low frequency features. Evaluation results show that the proposed filter is robust under various noise distributions. Further, the number of unknown parameters is very few and most of these parameters are adaptively obtained from the processed image.
Resumo:
The queenless ponerine ant Diacamma ceylonense and a population of Diacamma from the Nilgiri hills which we refer to as `nilgiri', exhibit interesting similarities as well as dissimilarities. Molecular phylogenetic study of these morphologically almost similar taxa has shown that D ceylonense is closely related to `nilgiri' and indicates that `nilgiri' is a recent diversion in the Diacamma phylogenetic tree. However, there is a striking behavioural difference in the way reproductive monopoly is maintained by the respective gamergates (mated egg laying workers), and there is evidence that they are genetically differentiated, suggesting a lack of gene flow To develop a better understanding of the mechanism involved in speciation of Diacamma, we have analysed karyotypes of D. ceylonense and `nilgiri' In both, we found surprising inter-individual and intra-individual karyotypic mosaicism. The observed numerical variability, both at intra-individual and inter-individual levels, does not appear to have hampered the sustainability of the chromosomal diversity in each population under study Since the related D. indicum, displays no such intra-individual or inter-Individual variability whatsoever under identical experimental conditions, these results are unlikely to he artifacts. Although no known mechanisms can account for the observed karyotypic variability of this nature, we believe that the present findings on the ants under study would provide opportunities for exciting new discoveries concerning the origin, maintenance and significance of intra-individual and inter-individual karyotypic mosaicism.
Resumo:
This paper describes a novel mimetic technique of using frequency domain approach and digital filters for automatic generation of EEG reports. Digitized EEG data files, transported on a cartridge, have been used for the analysis. The signals are filtered for alpha, beta, theta and delta bands with digital bandpass filters of fourth-order, cascaded, Butterworth, infinite impulse response (IIR) type. The maximum amplitude, mean frequency, continuity index and degree of asymmetry have been computed for a given EEG frequency band. Finally, searches for the presence of artifacts (eye movement or muscle artifacts) in the EEG records have been made.
Resumo:
A simple, non-iterative method for component wave delineation from the electrocardiogram (ECG) is derived by modelling its discrete cosine transform (DCT) as a sum of damped cosinusoids. Amplitude, phase, damping factor and frequency parameters of each of the cosinusoids are estimated by the extended Prony method. Different component waves are represented by non-overlapping clusters of model poles in the z plane and thus a component wave is derived by the addition of the inverse transformed (IDCT) impulse responses of the poles in the cluster. Akaike's information criterion (AIC) is used to determine the model order. The method performed satisfactory even in the presence of artifacts. The efficacy of the method is illustrated by analysis of continuous strips of ECG data.
Resumo:
We calculate the kaon B parameter in quenched lattice QCD at beta=6.0 using Wilson fermions at kappa=0.154 and 0.155. We use two kinds of nonlocal (''smeared'') sources for quark propagators to calculate the matrix elements between states of definite momentum. The use of smeared sources yields results with much smaller errors than obtained in previous calculations with Wilson fermions. By combining results for p=(0,0,0) and p=(0,0,1), we show that one can carry out the noperturbative subtraction necessary to remove the dominant lattice artifacts induced by the chiral-symmetry-breaking term in the Wilson action. Our final results are in good agreement with those obtained using staggered fermions. We also present results for B parameters of the DELTAI = 3/2 part of the electromagnetic penguin operators, and preliminary results for B(K) in the presence of two flavors of dynamical quarks.