25 resultados para ARMED CONFLICTS
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper presents a detailed analysis of a model for military conflicts where the defending forces have to determine an optimal partitioning of available resources to counter attacks from an adversary in two different fronts in an area fire situation. Lanchester linear law attrition model is used to develop the dynamical equations governing the variation in force strength. Here we address a static resource allocation problem namely, Time-Zero-Allocation (TZA) where the resource allocation is done only at the initial time. Numerical examples are given to support the analytical results.
Resumo:
This paper develops a model for military conflicts where the defending forces have to determine an optimal partitioning of available resources to counter attacks from an adversary from n different fronts. The problem of optimally partitioning the defending forces against the attacking forces is addressed. The Lanchester square law model is used to develop the dynamical equations governing the variation in force strength. Two different allocation schemes-Time-ZeroAllocation (TZA) and Continuous Constant Allocation (CCA) are considered and the optimal solutions for both are obtained analytically. These results generalize other results available in the literature. Numerical examples are given to support the analytical results.
Resumo:
In pay-per click sponsored search auctions which are currently extensively used by search engines, the auction for a keyword involves a certain number of advertisers (say k) competing for available slots (say m) to display their ads. This auction is typically conducted for a number of rounds (say T). There are click probabilities mu_ij associated with agent-slot pairs. The search engine's goal is to maximize social welfare, for example, the sum of values of the advertisers. The search engine does not know the true value of an advertiser for a click to her ad and also does not know the click probabilities mu_ij s. A key problem for the search engine therefore is to learn these during the T rounds of the auction and also to ensure that the auction mechanism is truthful. Mechanisms for addressing such learning and incentives issues have recently been introduced and would be referred to as multi-armed-bandit (MAB) mechanisms. When m = 1,characterizations for truthful MAB mechanisms are available in the literature and it has been shown that the regret for such mechanisms will be O(T^{2/3}). In this paper, we seek to derive a characterization in the realistic but nontrivial general case when m > 1 and obtain several interesting results.
Resumo:
A resource interaction based game theoretical model for military conflicts is presented in this paper. The model includes both the spatial decision capability of adversaries (decision regarding movement and subsequent distribution of resources) as well as their temporal decision capability (decision regarding level of allocation of resources for conflict with adversary’s resources). Attrition is decided at present by simple deterministic models. An additional feature of this model is the inclusion of the possibility of a given resource interacting with several resources of the adversary.The decisions of the adversaries is determined by solving for the equilibrium Nash strategies given that the objectives of the adversaries may not be in direct conflict. Examples are given to show the applicability of these models and solution concepts.
Resumo:
In pay-per-click sponsored search auctions which are currently extensively used by search engines, the auction for a keyword involves a certain number of advertisers (say k) competing for available slots (say m) to display their advertisements (ads for short). A sponsored search auction for a keyword is typically conducted for a number of rounds (say T). There are click probabilities mu(ij) associated with each agent slot pair (agent i and slot j). The search engine would like to maximize the social welfare of the advertisers, that is, the sum of values of the advertisers for the keyword. However, the search engine does not know the true values advertisers have for a click to their respective advertisements and also does not know the click probabilities. A key problem for the search engine therefore is to learn these click probabilities during the initial rounds of the auction and also to ensure that the auction mechanism is truthful. Mechanisms for addressing such learning and incentives issues have recently been introduced. These mechanisms, due to their connection to the multi-armed bandit problem, are aptly referred to as multi-armed bandit (MAB) mechanisms. When m = 1, exact characterizations for truthful MAB mechanisms are available in the literature. Recent work has focused on the more realistic but non-trivial general case when m > 1 and a few promising results have started appearing. In this article, we consider this general case when m > 1 and prove several interesting results. Our contributions include: (1) When, mu(ij)s are unconstrained, we prove that any truthful mechanism must satisfy strong pointwise monotonicity and show that the regret will be Theta T7) for such mechanisms. (2) When the clicks on the ads follow a certain click precedence property, we show that weak pointwise monotonicity is necessary for MAB mechanisms to be truthful. (3) If the search engine has a certain coarse pre-estimate of mu(ij) values and wishes to update them during the course of the T rounds, we show that weak pointwise monotonicity and type-I separatedness are necessary while weak pointwise monotonicity and type-II separatedness are sufficient conditions for the MAB mechanisms to be truthful. (4) If the click probabilities are separable into agent-specific and slot-specific terms, we provide a characterization of MAB mechanisms that are truthful in expectation.
Resumo:
Software transactional memory(STM) is a promising programming paradigm for shared memory multithreaded programs. While STM offers the promise of being less error-prone and more programmer friendly compared to traditional lock-based synchronization, it also needs to be competitive in performance in order for it to be adopted in mainstream software. A major source of performance overheads in STM is transactional aborts. Conflict resolution and aborting a transaction typically happens at the transaction level which has the advantage that it is automatic and application agnostic. However it has a substantial disadvantage in that STM declares the entire transaction as conflicting and hence aborts it and re-executes it fully, instead of partially re-executing only those part(s) of the transaction, which have been affected due to the conflict. This "Re-execute Everything" approach has a significant adverse impact on STM performance. In order to mitigate the abort overheads, we propose a compiler aided Selective Reconciliation STM (SR-STM) scheme, wherein certain transactional conflicts can be reconciled by performing partial re-execution of the transaction. Ours is a selective hybrid approach which uses compiler analysis to identify those data accesses which are legal and profitable candidates for reconciliation and applies partial re-execution only to these candidates selectively while other conflicting data accesses are handled by the default STM approach of abort and full re-execution. We describe the compiler analysis and code transformations required for supporting selective reconciliation. We find that SR-STM is effective in reducing the transactional abort overheads by improving the performance for a set of five STAMP benchmarks by 12.58% on an average and up to 22.34%.
Resumo:
The light distribution in the disks of many galaxies is ‘lopsided’ with a spatial extent much larger along one half of a galaxy than the other, as seen in M101. Recent observations show that the stellar disk in a typical spiral galaxy is significantly lopsided, indicating asymmetry in the disk mass distribution. The mean amplitude of lopsidedness is 0.1, measured as the Fourier amplitude of the m=1 component normalized to the average value. Thus, lopsidedness is common, and hence it is important to understand its origin and dynamics. This is a new and exciting area in galactic structure and dynamics, in contrast to the topic of bars and two-armed spirals (m=2) which has been extensively studied in the literature. Lopsidedness is ubiquitous and occurs in a variety of settings and tracers. It is seen in both stars and gas, in the outer disk and the central region, in the field and the group galaxies. The lopsided amplitude is higher by a factor of two for galaxies in a group. The lopsidedness has a strong impact on the dynamics of the galaxy, its evolution, the star formation in it, and on the growth of the central black hole and on the nuclear fuelling. We present here an overview of the observations that measure the lopsided distribution, as well as the theoretical progress made so far to understand its origin and properties. The physical mechanisms studied for its origin include tidal encounters, gas accretion and a global gravitational instability. The related open, challenging problems in this emerging area are discussed.
Resumo:
Animals often behave in a profligate fashion and decimate the populations of plants and animals they depend upon. They may, however, evolve prudent behaviour under special conditions, namely when such prudence greatly enhances the success of populations that are not too prone to invasions by profligate individuals. Cultural evolution in human societies can also lead to the adoption of prudent practices under similar conditions. These are more likely to be realized in stable environments in which the human populations tend to grow close to the carrying capacity, when the human groups are closed, and when the technology is stagnant. These conditions probably prevailed in the hunter—gatherer societies of the tropics and subtropics, and led to the adoption of a number of socially imposed restraints on the use of plant and animal resources. Such practices were rationalized in the form of Nature-worship. The Indian caste society became so organized as to fulfill these conditions, and gave rise to two religions, Buddhism and Jainism, which emphasize compassion towards all forms of life. The pastoral nomads of the middle east, on the other hand, lived in an environment which militated against prudence, and these societies gave rise to religions like Christianity, which declared war on nature. As the ruling elite and state have grown in power, they have tried to wrest control of natural resources from the local communities. This has sometimes resulted in conservation and prudent use under guidance from the state, but has often led to conflicts with local populations to the detriment of prudent behaviour. Modern technological progress has also often removed the need for conservation, as when availability of coal permitted the deforestation of England. While modern scientific understanding has led to a better appreciation of the need for prudence, the prevailing social and economic conditions often militate against any implementation of the understanding, as is seen from the history of whaling. However, the imperative for survival of the poor from the Third-World countries may finally bring about conditions in which ecological prudence may once again come to dominate human cultures as it might once have done with stable societies of hunter—gatherers.
Resumo:
Indian society is an agglomeration of several thousand endogamous groups or castes each with a restricted geographical range and a hereditarily determine mode of subsistence. These reproductively isolated castes may be compared to biological species, and the society thought of as a biological community with each caste having its specific ecological niche. In this paper we examine the ecological-niche relationships of castes which are directly dependent on natural resources. Evidence is presented to show that castes living together in the same region had so organized their pattern of resource use as to avoid excessive intercaste competition for limiting resources. Furthermore, territorial division of the total range of the caste regulated intra-caste competition. Hence, a particular plant or animal resource in a given locality was used almost exclusively by a given lineage within a caste generation after generation. This favoured the cultural evolution of traditions ensuring sustainable use of natural resources. This must have contributed significantly to the stability of Indian caste society over several thousand years. The collapse of the base of natural resources and increasing monetarization of the economy has, however, destroyed the earlier complementarity between the different castes and led to increasing conflicts between them in recent years.
Resumo:
A new parallel algorithm for transforming an arithmetic infix expression into a par se tree is presented. The technique is based on a result due to Fischer (1980) which enables the construction of the parse tree, by appropriately scanning the vector of precedence values associated with the elements of the expression. The algorithm presented here is suitable for execution on a shared memory model of an SIMD machine with no read/write conflicts permitted. It uses O(n) processors and has a time complexity of O(log2n) where n is the expression length. Parallel algorithms for generating code for an SIMD machine are also presented.
Resumo:
Design considerations are presented for a dense weather radar network to support multiple services including aviation. Conflicts, tradeoffs and optimization issues in the context of operation in a tropical region are brought out. The upcoming Indian radar network is used as a case study. Algorithms for data mosaicing are briefly outlined.
Resumo:
This paper addresses the problem of detecting and resolving conflicts due to timing constraints imposed by features in real-time systems. We consider systems composed of a base system with multiple features or controllers, each of which independently advise the system on how to react to input events so as to conform to their individual specifications. We propose a methodology for developing such systems in a modular manner based on the notion of conflict tolerant features that are designed to continue offering advice even when their advice has been overridden in the past. We give a simple priority based scheme for composing such features. This guarantees the maximal use of each feature. We provide a formal framework for specifying such features, and a compositional technique for verifying systems developed in this framework.
Resumo:
This paper addresses the problem of detecting and resolving conflicts due to timing constraints imposed by features in real-time and hybrid systems. We consider systems composed of a base system with multiple features or controllers, each of which independently advise the system on how to react to input events so as to conform to their individual specifications. We propose a methodology for developing such systems in a modular manner based on the notion of conflict-tolerant features that are designed to continue offering advice even when their advice has been overridden in the past. We give a simple priority-based scheme forcomposing such features. This guarantees the maximal use of each feature. We provide a formal framework for specifying such features, and a compositional technique for verifying systems developed in this framework.
Resumo:
This paper develops a model for military conflicts where the defending forces have to determine an optimal partitioning of available resources to counter attacks from an adversary in two different fronts. The Lanchester attrition model is used to develop the dynamical equations governing the variation in force strength. Three different allocation schemes - Time-Zero-Allocation (TZA), Allocate-Assess-Reallocate (AAR), and Continuous Constant Allocation (CCA) - are considered and the optimal solutions are obtained in each case. Numerical examples are given to support the analytical results.
Resumo:
This paper develops a model for military conflicts where the defending forces have to determine an optimal partitioning of available resources to counter attacks from an adversary in two different fronts. The Lanchester attrition model is used to develop the dynamical equations governing the variation in force strength. Three different allocation schemes - Time-Zero-Allocation (TZA), Allocate-Assess-Reallocate (AAR), and Continuous Constant Allocation (CCA) - are considered and the optimal solutions are obtained in each case. Numerical examples are given to support the analytical results.