240 resultados para ANODE MATERIALS
em Indian Institute of Science - Bangalore - Índia
Resumo:
Borocarbonitrides (BxCyNz) with a graphene-like structure exhibit a remarkable high lithium cyclability and current rate capability. The electrochemical performance of the BxCyNz materials, synthesized by using a simple solid-state synthesis route based on urea, was strongly dependent on the composition and surface area. Among the three compositions studied, the carbon-rich compound B0.15C0.73N0.12 with the highest surface area showed an exceptional stability (over 100cycles) and rate capability over widely varying current density values (0.05-1Ag(-1)). B0.15C0.73N0.12 has a very high specific capacity of 710mAhg(-1) at 0.05Ag(-1). With the inclusion of a suitable additive in the electrolyte, the specific capacity improved drastically, recording an impressive value of nearly 900mAhg(-1) at 0.05Ag(-1). It is believed that the solid-electrolyte interphase (SEI) layer at the interface of BxCyNz and electrolyte also plays a crucial role in the performance of the BxCyNz .
Resumo:
The demand for high power density lithium-ion batteries (LIBs) for diverse applications ranging from mobile electronics to electric vehicles have resulted in an upsurge in the development of nanostructured electrode materials worldwide. Graphite has been the anode of choice in commercial LiBs. Due to several detrimental electrochemical and environmental issues, efforts are now on to develop alternative non-carbonaceous anodes which are safe, nontoxic and cost effective and at the same time exhibit high lithium storage capacity and rate capability. Titania (TiO2) and tin (Sn) based systems have gained much attention as alternative anode materials. Nanostructuring of TiO2 and SnO2 have resulted in enhancement of structural stability and electrochemical performances. Additionally, electronic wiring of mesoporous materials using carbon also effectively enhanced electronic conductivity of mesoporous electrode materials. We discuss in this article the beneficial influence of structural spacers and electronic wiring in anatase titania (TiO2) and tin dioxide (SnO2).
Resumo:
The aim of the contribution is to introduce a high performance anode alternative to graphite for lithium-ion batteries (LiBs). A simple process was employed to synthesize uniform graphene-like few-layer tungsten sulfide (WS2) supported on reduced graphene oxide (RGO) through a hydrothermal synthesis route. The WS2-RGO (80:20 and 70:30) composites exhibited good enhanced electrochemical performance and excellent rate capability performance when used as anode materials for lithium-ion batteries. The specific capacity of the WS2-RGO composite delivered a capacity of 400-450 mAh g(-1) after 50 cycles when cycled at a current density of 100 mA g(-1). At 4000 mA g(-1), the composites showed a stable capacity of approximately 180-240 mAh g(-1), respectively. The noteworthy electrochemical performance of the composite is not additive, rather it is synergistic in the sense that the electrochemical performance is much superior compared to both WS2 and RGO. As the observed lithiation/delithiation for WS2-RGO is at a voltage 1.0 V (approximate to 0.1 V for graphite, Li* /Li), the lithium-ion battery with WS2-RGO is expected to possess high interface stability, safety and management of electrical energy is expected to be more efficient and economic. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
There is an endless quest for new materials to meet the demands of advancing technology. Thus, we need new magnetic and metallic/semiconducting materials for spintronics, new low-loss dielectrics for telecommunication, new multi-ferroic materials that combine both ferroelectricity and ferromagnetism for memory devices, new piezoelectrics that do not contain lead, new lithium containing solids for application as cathode/anode/electrolyte in lithium batteries, hydrogen storage materials for mobile/transport applications and catalyst materials that can convert, for example, methane to higher hydrocarbons, and the list is endless! Fortunately for us, chemistry - inorganic chemistry in particular - plays a crucial role in this quest. Most of the functional materials mentioned above are inorganic non-molecular solids, while much of the conventional inorganic chemistry deals with isolated molecules or molecular solids. Even so, the basic concepts that we learn in inorganic chemistry, for example, acidity/basicity, oxidation/reduction (potentials), crystal field theory, low spin-high spin/inner sphere-outer sphere complexes, role of d-electrons in transition metal chemistry, electron-transfer reactions, coordination geometries around metal atoms, Jahn-Teller distortion, metal-metal bonds, cation-anion (metal-nonmetal) redox competition in the stabilization of oxidation states - all find crucial application in the design and synthesis of inorganic solids possessing technologically important properties. An attempt has been made here to illustrate the role of inorganic chemistry in this endeavour, drawing examples from the literature its well as from the research work of my group.
Resumo:
Nanocrystalline Li4Ti5O12 (LTO) crystallizing in cubic spinel-phase has been synthesized by single-step-solution-combustion method in less than one minute. LTO particles thus synthesized are flaky and highly porous in nature with a surface area of 12 m(2)/g. Transmission electron micrographs indicate the primary particles to be agglomerated crystallites of varying size between 20 and 50 nm with a 3-dimensional interconnected porous network. During their galvanostatic charge-discharge at varying rates, LTO electrodes yield a capacity value close to the theoretical value of 175 mA h/g at C/2 rate. The electrodes also exhibit promising capacity retention with little capacity loss over 100 cycles at varying discharge rates together with attractive discharge-rate capabilities yielding capacity values of 140 mA h/g and 70 mA h/g at 10 and 100 C discharge rates, respectively. The ameliorated electrode-performance is ascribed to nano and highly porous morphology of the electrodes that provide short diffusion-paths for Li in conjunction with electrolyte percolation through the electrode pores ensuring a high flux of Li.
Resumo:
Electrochemical deposition of Ni-Pd alloy films of various compositions from bath solution containing ethylenediamine (EDA) was carried out to use as anode material for methanol oxidative fuel cell in H2SO4 medium. Electronic absorption spectrum of bath solution containing Ni2+ Pd2+ ions and EDA indicated the formation of a four coordinate square planar metal-ligand complex of both the metal ions. X-ray diffraction (XRD) patterns of the deposited alloy films show an increase in Pd-Ni alloy lattice parameter with increase in Pd content, and indicate the substitution of Pd in the lattice. A nano/ultrafine kind of crystal growth was observed in the alloy film deposited at low current density (2.5 mA cm(-2)). X-ray photoelectron spectroscopic (XPS) studies on the successively sputtered films showed the presence of Ni and Pd in pure metallic states and the surface concentration ratio of Ni to Pd is less than bulk indicating the segregation of Pd on the surface. Electro-catalytic oxidation of methanol in H2SO4 medium is found to be promoted on Ni-Pd electrodeposits. The anodic peak current characteristics to oxidation reaction on Ni-Pd was found typically high when compared to pure nickel and the relative increase in surface area by alloying the Ni by Pd was found to be as much as 300 times. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Doping of TiO2 with a suitable metal ion where dopant redox potential couples with that of titanium (Ti4+) and act as catalyst for additional reduction of Ti4+ to Ti2+ (Ti4+ -> Ti3+ -> Ti2+) is envisaged here to enhance lithium storage even higher than one Li/TiO2. Accordingly, 10 atom% Pt ion substituted TiO2, Ti0.9Pt0.1O2 nanocrystallites was synthesized by sonochemical method using diethylenetriamine (DETA) as complexing agent. Powder X-ray diffraction pattern (XRD), Rietveld refinement and TEM study reveals that Ti0.9Pt0.1O2 nanocrystallites of similar to 4 nm size crystallize in anatase structure. X-ray photo-electron spectroscopy (XPS) study confirms that and both Ti and Pt are in 4+ oxidation state. Due to Pt4+ ion substitution in TiO2, reducibility of TiO2 was enhanced and Ti4+ was reduced up to Ti2+ state via coupling of Pt states (Pt4+/Pt2+/Pt-0) with Ti states (Ti4+/Ti3+/Ti2+). Galvanostatic cycling of Ti0.9Pt0.1O2 against lithium showed very high capacity of 430 mAhg(-1) or exchange of similar to 1.5Li/Ti0.9Pt0.1O2. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.029208jes] All rights reserved.
Resumo:
We demonstrate here that mesoporous tin dioxide (abbreviated M-SnO2) with a broad pore size distribution can be a prospective anode in lithium-ion batteries. M-SnO2 with pore size ranging between 2 and 7.5 nm was synthesized using a hydrothermal procedure involving two different surfactants of slightly different sizes, and characterized. The irreversible capacity loss that occurs during the first discharge and charge cycle is 890 mAh g(-1), which is smaller than the 1,010-mAh g(-1) loss recorded for mesoporous SnO2 (abbreviated S-SnO2) synthesized using a single surfactant. After 50 cycles, the discharge capacity of M-SnO2 (504 mAh g(-1)) is higher than that of S-SnO2 (401 mAh g(-1)) and solid nanoparticles of SnO2 (abbreviated nano-SnO2 < 4 mAh g(-1)) and nano-SnO2. Transmission electron microscopy revealed higher disorder in the pore arrangement in M-SnO2. This, in turn imparts lower stiffness to M-SnO2 (elastic modulus, E (R) a parts per thousand aEuro parts per thousand 14.5 GPa) vis-a-vis S-SnO2 (E (R) a parts per thousand aEuro parts per thousand 20.5 GPa), as obtained using the nanoindentation technique. Thus, the superior battery performance of M-SnO2 is attributed to its intrinsic material mechanical property. The fluidity of the internal microstructure of M-SnO2 resulted in a lower degree of aggregation of Sn particles compared to S-SnO2 and nano-SnO2 structural stabilization and long-term cyclability.
Resumo:
Graphene nanosheet (GNS) was synthesized by using microwave plasma enhanced CVD on copper substrate and followed by evaporation of tin metal. Scanning and transmission electron microscopy show that nanosize Sn particles are well embedded into the GNS matrix. The composition, structure, and electrochemical properties were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), cyclic voltammetry (CV) and chrono-potentiometry. The first discharge capacity of as-deposited and annealed SnGNS obtained was 1551 mA h/g and 975 mA h/g, respectively. The anodes show excellent cyclic performance and coulombic efficiency.
Resumo:
Graphene with large surface area and robust structure has been proposed as a high storage capacity anode material for Li ion batteries. While the inertness of pristine graphene leads to better Li kinetics, poor adsorption leads to Li clustering, significantly affecting the performance of the battery. Here, we show the role of defects and doping in achieving enhanced adsorption without compromising on the high diffusivity of Li. Using first principles density functional theory (DFT) calculations, we carry out a comprehensive study of diffusion kinetics of Li over the plane of the defective structures and calculate the change in the number of Li atoms in the vicinity of defects, with respect to pristine graphene. Our results show that the Li-C interaction, storage capacity and the energy barriers depend sensitively on the type of defects. The un-doped and boron doped mono-vacancy, doped di-vacancy up to two boron, one nitrogen doped di-vacancy, and Stone-Wales defects show low energy barriers that are comparable to pristine graphene. Furthermore, boron doping at mono-vacancy enhances the adsorption of Li. In particular, the two boron doped mono-vacancy graphene shows both a low energy barrier of 0.31 eV and better adsorption, and hence can be considered as a potential candidate for anode material.
Resumo:
All solid state batteries are essential candidate for miniaturizing the portable electronics devices. Thin film batteries are constructed by layer by layer deposition of electrode materials by physical vapour deposition method. We propose a promising novel method and unique architecture, in which highly porous graphene sheet embedded with SnO2 nanowire could be employed as the anode electrode in lithium ion thin film battery. The vertically standing graphene flakes were synthesized by microwave plasma CVD and SnO2 nanowires based on a vapour-liquid-solid (VLS) mechanism via thermal evaporation at low synthesis temperature (620 degrees C). The graphene sheet/SnO2 nanowire composite electrode demonstrated stable cycling behaviours and delivered a initial high specific discharge capacity of 1335 mAh g(-1) and 900 mAh g(-1) after the 50th cycle. Furthermore, the SnO2 nanowire electrode displayed superior rate capabilities with various current densities.
Resumo:
Porous flower-like alpha-Fe2O3 nanostructures have been synthesized by ethylene glycol mediated iron alkoxide as an intermediate and studied as an anode material of Li-ion battery. The iron alkoxide precursor is heated at different temperatures from 300 to 700 degrees C. The alpha-Fe2O3 samples possess porosity and high surface area. There is a decrease in pore volume as well as surface area by increasing the preparation temperature. The reversible cycling properties of the alpha-Fe2O3 nanostructures have been evaluated by cyclic voltammetry, galvanostatic charge discharge cycling, and galvanostatic intermittent titration measurements at ambient temperature. The initial discharge capacity values of 1063, 1168,1183, 1152 and 968 mAh g(-1) at a specific current of 50 mA g(-1) are obtained for the samples prepared at 300, 400, 500, 600 and 700 degrees C, respectively. The samples prepared at 500 and 600 degrees C exhibit good cycling performance with high rate capability. The high rate capacity is attributed to porous nature of the materials. As the iron oxides are inexpensive and environmental friendly, the alpha-Fe2O3 has potential application as anode material for rechargeable Li batteries. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Lithium sodium titanate insertion-type anode has been synthesized by classical solid-state (dry) and an alternate solution-assisted (wet) sonochemical synthesis routes. Successful synthesis of the target compound has been realized using simple Na- and Li-hydroxide salts along with titania. In contrast to the previous reports, these energy-savvy synthesis routes can yield the final product by calcination at 650 -750 degrees C for limited duration of 1-10 h. Owing to the restricted calcination duration (dry route for 1-2 h and wet route for 1-5 h), they yield homogeneous nanoscale lithium sodium titanate particles. Sono-chemical synthesis reduces the lithium sodium titanate particle size down to 80-100 nm vis-a-vis solid-state method delivering larger (200-500 nm) particles. Independent of the synthetic methods, the end products deliver reversible electrochemical performance with reversible capacity exceeding 80 mAh.g(-1) acting as a 1.3 V anode for Li-ion batteries. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In the present study, a microwave-assisted, solution-based route has been employed to obtain porous CoO nano structures. Detailed characterization reveals that the flower-like nanostructures comprise petal-like sheets, each of which is made of an ordered, porous arrangement of crystallites of CoO measuring about 6 nm. TEM analysis shows that each ``petal'' is an oriented aggregate of CoO nanocrystals, such aggregation promoted by the hydroxyl moieties derived from the solution. The structure provides a large specific area as well as the porosity desirable in electrodes in Li-ion batteries. Electrochemical measurements carried out on electrodes made of nanostructured CoO show excellent Li ion-storing capability. A specific capacitance of 779 mAh g(-1) has been measured at a specific current of 100 mA g(-1). Measurements show also excellent cyclability and coulombic efficiency. Impedance spectroscopy provides evidence for charge transfer occurring in the porous networks. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The characterisation of cracks is usually done using the well known three basic fracture modes, namely opening, shearing and tearing modes. In isotropic materials these modes are uncoupled and provide a convenient way to define the fracture parameters. It is well known that these fracture modes are coupled in anisotropic materials. In the case of orthotropic materials also, coupling exists between the fracture modes, unless the crack plane coincides with one of the axes of orthotropy. The strength of coupling depends upon the orientation of the axes of orthotropy with respect to the crack plane and so the energy release rate components associated with each of the modes vary with crack orientation. The variation, of these energy release rate components with the crack orientation with respect to orthotropic axes, is analyzed in this paper. Results indicate that in addition to the orthotropic planes there exists other planes with reference to which fracture modes are uncoupled.