59 resultados para AND1-1B
em Indian Institute of Science - Bangalore - Índia
Resumo:
We describe the synthesis and structural characterization of new layered bismuth titanates, A[Bi3Ti4O13] and A[Bi3PbTi5O16]for A = K, Cs, corresponding to n = 4 and 5 members of the Dion-Jacobson series of layered perovskites of the general formula, A[A'n-1BnO3n+1]. These materials have been prepared by solid state reaction of the constituents containing excess alkali, which is required to suppress the formation of competitive Aurivillius phases. Unlike the isostructural niobates and niobium titanates of the same series, the new phases reported here are spontaneously hydrated-a feature which could make them potentially useful as photocatalysts for water splitting reaction. On hydration of the potassium compounds, the c axis expands by ca. 2 Angstrom and loses its doubling [for example, the tetragonal lattice parameters of K[Bi3Ti4O13] and its dihydrate are respectively a = 3900(1)Angstrom c 37.57(2) Angstrom; a 3.885(1) Angstrom, c = 20.82(4) Angstrom]; surprisingly, the cesium analogues do not show a similar change on hydration.
Resumo:
Hypoeutectic boron addition (0.1 wt.%) to Ti-6Al-4V is known to cause significant refinement of the cast microstructure. In the present investigation, it has been observed that trace boron addition to Ti-6Al-4V alloy also ensures excellent microstructural homogeneity throughout the ingot. A subdued thermal gradient, related to the basic grain refinement mechanism by constitutional undercooling, persists during solidification for the boron-containing alloy and maintains equivalent beta grain growth kinetics at different locations in the ingot. The Ti-6Al-4V alloy shows relatively strong texture with preferred components (e.g. ingot axis parallel to[0 0 0 1] or [1 0 (1) over bar 0]) over the entire ingot and gradual transition of texture components along the radius. For Ti-6Al-4V-0.1B alloy, significant weakening characterizes both the high-temperature beta and room-temperature a texture. In addition to solidification factors that are responsible for weak beta texture development, microstructural differences due to boron addition, e.g. the absence of grain boundary alpha phase and presence of TiB particles, strongly affects the mechanism of beta -> alpha phase transformation and consequently weakens the alpha phase texture. Based on the understanding developed for the boron-modified alloy, a novel mechanism has been proposed for the microstructure and texture formation during solidification and phase transformation. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Hot deformation behavior of a hypoeutectic Ti-6Al-4V-0.1B alloy in (alpha + beta) phase field is investigated in the present study with special reference to flow response, kinetics and microstructural evolution. For a comparison, the base alloy Ti-6Al-4V was also studied under identical conditions. Dynamic recovery of alpha phase occurs at low temperatures while softening due to globularization and/or dynamic recrystallization dominates at high temperatures irrespective of boron addition. Microstructural features for both the alloys display bending and kinking of alpha lamellae for near alpha test temperatures. Unlike Ti-6Al-4V, no sign of instability formation was observed in Ti-6Al-4V-0.1B for any deformation condition except for cavitation around TiB particles, due to deformation incompatibility and strain accumulation at the particle-matrix interface. The absence of macroscopic instabilities and early initiation of softening mechanisms as a result of boron addition has been attributed to microstructural features (e.g. refined prior beta grain and alpha colony size, absence of grain boundary alpha layer, presence of TiB particles at prior beta boundaries, etc.) of the respective alloys prior to deformation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Superplastic tensile tests on warm rolled and optimally annealed boron modified alloy Ti-6Al-4V-0.1B at a temperature of 850 degrees C and initial strain rate of 3 x 10(-4) s(-1) results in a higher elongation (similar to 500%) compared to the base alloy Ti-6Al-4V (similar to 400%). The improvement in superplasticity has been attributed to enhanced contribution from interfacial boundary sliding to the overall deformation for the boron modified alloy. The boundary sliding was facilitated by the starting microstructure which predominantly contains small equiaxed primary a grains with narrow size distribution. Dynamic processes such as coarsening and globularization of primary a phase occur under the test condition but do not significantly contribute to the observed difference in superplasticity between the two alloys. In spite of cavitation takes place around the TiB particles during deformation, they do not cause macroscopic cracking and early fracture by virtue of the cavities being extremely localized. Localized cavitation is found to correlate with increased material transfer due to faster diffusion.
Resumo:
In the current study, the evolution of microstructure and texture has been studied for Ti-6Al-4V-0.1B alloy during sub-transus thermomechanical processing. This part of the work deals with the deformation response of the alloy by rolling in the (alpha + beta) phase field. The (alpha + beta) annealing behavior of the rolled specimen is communicated in part II. Rolled microstructures of the alloys exhibit either kinked or straight alpha colonies depending on their orientations with respect to the principal rolling directions. The Ti-6Al-4V-0.1B alloy shows an improved rolling response compared with the alloy Ti-6Al-4V because of smaller alpha lamellae size, coherency of alpha/beta interfaces, and multiple slip due to orientation factors. Accelerated dynamic globularization for this alloy is similarly caused by the intralamellar transverse boundary formation via multiple slip and strain accumulation at TiB particles. The (0002)(alpha) pole figures of rolled Ti-6Al-4V alloy shows ``TD splitting'' at lower rolling temperatures because of strong initial texture. Substantial beta phase mitigates the effect of starting texture at higher temperature so that ``RD splitting'' characterizes the basal pole figure. Weak starting texture and easy slip transfer for Ti-6Al-4V-0.1B alloy produce simultaneous TD and RD splittings in basal pole figures at all rolling temperatures.
Resumo:
The first part of this study describes the evolution of microstructure and texture in Ti-6Al-4V-0.1B alloy during sub-transus rolling vis-A -vis the control alloy Ti-6Al-4V. In the second part, the static annealing response of the two alloys at self-same conditions is compared and the principal micromechanisms are analyzed. Faster globularization kinetics has been observed in the Ti-6Al-4V-0.1B alloy for equivalent annealing conditions. This is primarily attributed to the alpha colonies, which leads to easy boundary splitting via multiple slip activation in this alloy. The other mechanisms facilitating lamellar to equiaxed morphological transformations, e.g., termination migration and cylinderization, also start early in the boron-modified alloy due to small alpha colony size, small aspect ratio of the alpha lamellae, and the presence of TiB particles in the microstructure. Both the alloys exhibit weakening of basal fiber (ND||aOE (c) 0001 >) and strengthening of prism fiber (RD||aOE (c) aOE(a)) upon annealing. A close proximity between the orientations of fully globularized primary alpha and secondary alpha phases during alpha -> beta -> alpha transformation has accounted for such a texture modification.
Resumo:
The redox regulation of protein tyrosine phosphatase 1B (PTP1B) via the unusual transformation of its sulfenic acid (PTP1B-SOH) to a cyclic sulfenyl amide intermediate is studied by using small molecule chemical models. These studies suggest that the sulfenic acids derived from the H2O2-mediated reactions o-amido thiophenols do not efficiently cyclize to sulfenyl amides and the sulfenic acids produced in situ can be trapped by using methyl iodide. Theoretical calculations suggest that the most stable conformer of such sulfenic acids are stabilized by n(O) -> sigma* (S-OH) orbital interactions, which force the -OH group to adopt a position trans to the S center dot center dot center dot O interaction, leading to an almost linear arrangement of the O center dot center dot center dot S-O moiety and this may be the reason for the slow cyclization of such sulfenic acids to their corresponding sulfenyl amides. On the other hand, additional substituents at the 6-position of o-amido phenylsulfenic acids that can induce steric environment and alter the electronic properties around the sulfenic acid moiety by S center dot center dot center dot N or S center dot center dot center dot O nonbonded interactions destabilize the sulfenic acids by inducing strain in the molecule. This may lead to efficient the cyclization of such sulfenic acids. This model study suggests that the amino acid residues in the close proximity of the sulfenic acid moiety in PTP1B may play an important role in the cyclization of PTP1B-SOH to produce the corresponding sulfenyl amide.
Resumo:
Deformation instabilities, such as shear cracking and grain boundary cavitation, which are observed in the secondary tensile region of Ti-6Al-4V alloy during compressive deformation in the (+)-phase field, do not form in Ti-6Al-4V-0.1B alloy when processed under the same conditions. This has been attributed to the microstructural modifications, e.g. the absence of grain boundary and adjacent grain boundary retained layers and a lower proportion of 90(o)-misoriented -colonies that occur with boron addition.
Resumo:
Microstructure and texture are known to undergo drastic modifications due to trace hypoeutectic boron addition (similar to 0.1wt.%) for various titanium alloys e.g. Ti-6Al-4V. The deformation behaviour of such an alloy Ti-6Al-4V-0.1B is investigated in the (+) phase field and compared against that of the base alloy Ti-6Al-4V studied under selfsame conditions. The deformation microstructures for the two alloys display bending and kinking of lamellae in near and softening via globularization of lamella in near phase regimes, respectively. The transition temperature at which pure slip based deformation changes to softening is lower for the boron added alloy. The presence of TiB particles is largely held attributable for the early softening of Ti-6Al-4V-0.1B alloy. The compression texture of both the alloys carry signature of pure phase defamation at lower temperature and phase transformation near the transus temperature. Texture is influenced by a complex interplay of the deformation and transformation processes in the intermediate temperature range. The contribution from phase transformation is prominent for Ti-6Al-4V-0.1B alloy at comparatively lower temperature.
Resumo:
Thermo-mechanically processed Ti-6Al-4V alloy, with (0.1 wt.%) and without boron addition, has been subjected to tensile test under superplastic deformation conditions (Temperature, T = 850 degrees C and initial strain rate, (epsilon) over dot = 3 x 10(-4) s(-1)). The boron added alloy exhibited higher elongation (similar to 430%) in comparison to the base alloy without boron (similar to 365%). Superior ductility of the boron added alloy has been attributed to an enhanced alpha/beta interfacial boundary sliding. This was caused by riotous dynamic globularization leading to the abundant presence of equiaxed primary alpha grains with refined sizes and narrow distribution in the deforming microstructure. Cavities do occur around TiB particles during deformation; the cavities are, however, extremely localized and do not cause macroscopic cracking. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Asymmetric tri-bridged diruthenium(III) complexes, [Ru2O(O(2)CR)(3)(en) (PPh(3))(2)](ClO4) (R = C6H4-p-X: X = OMe (1a), Me (1b); en=1,2-diaminoethane), were prepared and structurally characterized. Complex 1a 3CHCl(3), crystallizes in the triclinic space group P (1) over bar with a = 14.029(5), b = 14.205(5), c = 20.610(6) Angstrom, alpha= 107.26(3), beta = 101.84(3), gamma= 97.57(3)degrees, V= 3756(2) Angstrom(3) and Z = 2. The complex has an {Ru-2(mu-O)(mu-O(2)CR)(2)(2+)} core and exhibits [O4PRu(mu-O)RuPO2N2](+) coordination environments for the metal centers. The novel structural feature is the asymmetric arrangement of ligands at the terminal sites of the core which shows an Ru... Ru separation of 3.226(3) Angstrom and an Ru-O-Ru angle of 119.2(5)degrees. An intense visible band observed near 570 nm is assigned to a charge transfer transition involving the d pi-Ru(III) and p pi-mu-O Orbitals. Cyclic voltammetry of the complexes displays a reversible Ru-2(III,III) reversible arrow Ru-2(III,IV) couple near 0.8 V (versus SCE) in MeCN-0.1 M TBAP.
Resumo:
Birch reductio and reductive methylations of some substituted naphtholic acids have been examined. The factors influencing the mechanism of reduction process have been discussed. Some of the reduced naphthoic acids are useful synthons for synthesis.
Resumo:
Axillary shoot proliferation was obtained using explants of Eucalyptus grandis L. juvenile and mature stages on a defined medium. Murashige and Skoog medium (MS) supplemented with benzyladenine (BA), naphthalene acetic acid (NAA) and additional thiamine. Excised shoots were induced to root on a sequence of three media: (1) White's medium containing indoleacetic acid (IAA), NAA and indole butyric acid; (IBA), (2) half-strength MS medium with charcoal and (3) half-strength MS liquid medium. The two types of explants differed in rooting response, with juvenile-derived shoots giving 60% rooting and adult-derived ones only 35%. Thus, the factors limiting cloning of selected trees in vitro are determined to be those controlling rooting of shoots in E. grandis.
Resumo:
Sets of multivalued dependencies (MVDs) having conflict-free covers are important to the theory and design of relational databases [2,12,15,16]. Their desirable properties motivate the problem of testing a set M of MVDs for the existence of a confiict-free cover. In [8] Goodman and Tay have proposed an approach based on the possible equivalence of M to a single (acyclic) join dependency (JD). We remark that their characterization does not lend an insight into the nature of such sets of MVDs. Here, we use notions that are intrinsic to MVDs to develop a new characterization. Our approach proceeds in two stages. In the first stage, we use the notion of “split-free” sets of MVDs and obtain a characterization of sets M of MVDs having split-free covers. In the second, we use the notion of “intersection” of MVDs to arrive at a necessary and sufficient condition for a split-free set of MVDs to be conflict-free. Based on our characterizations, we also give polynomial-time algorithms for testing whether M has split-free and conflict-free covers. The highlight of our approach is the clear insight it provides into the nature of sets of MVDs having conflict-free covers. Less emphasis is given in this paper to the actual efficiency of the algorthms. Finally, as a bonus, we derive a desirable property of split-free sets of MVDs,thereby showing that they are interesting in their own right.
Resumo:
The design and two-component [2 + 3] self-assembly of a series of new organometallic molecular prisms (3a-d) are described. Assemblies 3a,b incorporate 4,4',4'-tris[ethynyl-trans-Pt(PEt3)(2)]triphenylamine (1a) containing a Pt-ethynyl functionality as tritopic planar acceptor and organic ``clips'' 2a and 2b, respectively [where 2a = 1,3-bis(3-pyridyl)isophthalic amide; 2b= 1,3-bis(ethynyl-3-pyridyl)benzene]. In a complementary approach all organic tritopic planar donor ligand 2c [2c 4,4',4'-tris(4-pyridylethynyl)triphenylamine] was assembled with all organometallic ``clip'', 1,8-bis[{trans-Pt(PEt3) (2)(NO3)}ethynyl]anthracene (1b), to obtain prism 3c. A organometallic carbon-centered acceptor, 1,1,1- tris[4-{trans-Pt(PEt3)(2)(NO3)}ethynylphenyl]ethane (1c), has been prepared, and its prism derivative (3d) using an organic `clip'' is prepared. Assemblies (3a-d) were characterized by multinuclear NMR spectroscopy, electrospray ionization mass spectroscopy, and elemental analysis. 3a-d showed fluorescence behavior in solution, and quenching of fluorescence intensity (3a,3c-d) was noticed upon addition of TNT (2,4,6-trinitrotoluene), a common constituent of many commercial explosives. A thin film of the assembly 3d made by spin coating of a solution of 3 x 10(-5) M in DMF on it 1 cm(2) quartz plate showed fluorescence response to the vapor of TNT.