4 resultados para AEROELASTICITY
em Indian Institute of Science - Bangalore - Índia
Resumo:
The interaction between large deflections, rotation effects and unsteady aerodynamics makes the dynamic analysis of rotating and flapping wing a nonlinear aeroelastic problem. This problem is governed by nonlinear periodic partial differential equations whose solution is needed to calculate the response and loads acting on vehicles using rotary or flapping wings for lift generation. We look at three important problems in this paper. The first problem shows the effect of nonlinear phenomenon coming from piezoelectric actuators used for helicopter vibration control. The second problem looks at the propagation on material uncertainty on the nonlinear response, vibration and aeroelastic stability of a composite helicopter rotor. The third problem considers the use of piezoelectric actuators for generating large motions in a dragonfly inspired flapping wing. These problems provide interesting insights into nonlinear aeroelasticity and show the likelihood of surprising phenomenon which needs to be considered during the design of rotary and flapping wing vehicle
Resumo:
One of the important developments in rotary wing aeroelasticity in the recent past has been the growing awareness and acceptance of the fact that the problem is inherently non-linear and that correct treatment of aeroelastic problems requires the development of a consistent mathematical model [l]. This has led to a number of studies devoted to the derivation of a consistent set of “second order” non-linear equations, for example, those of Hodges and Dowel1 [2], of Rosen and Friedmann [3], and of Kvaternik, White and Kaza [4], each of which differs from the others on the question of the inclusion of certain terms in the equations of motion. The final form of the equations depends first upon the ordering scheme used for characterizing the displacements and upon the consistency with which this is applied in omitting terms of lower order. The ideal way of achieving this would be to derive the equations of motion with all the terms first included regardless of their relative orders of magnitude and then to apply the ordering scheme.
Resumo:
Accurate numerical solutions to the problems in fluid-structure (aeroelasticity) interaction are becoming increasingly important in recent years. The methods based on FCD (Fixed Computational Domain) and ALE (Alternate Lagrangian Eulerian) to solve such problems suffer from numerical instability and loss of accuracy. They are not general and can not be extended to the flowsolvers on unstructured meshes. Also, global upwind schemes can not be used in ALE formulation thus leads to the development of flow solvers on moving grids. The KFVS method has been shown to be easily amenable on moving grids required in unsteady aerodynamics. The ability of KFMG (Kinetic Flux vector splitting on Moving Grid) Euler solver in capturing shocks, expansion waves with small and very large pressure ratios and contact discontinuities has been demonstrated.
Resumo:
Nonlinear equations in mathematical physics and engineering are solved by linearizing the equations and forming various iterative procedures, then executing the numerical simulation. For strongly nonlinear problems, the solution obtained in the iterative process can diverge due to numerical instability. As a result, the application of numerical simulation for strongly nonlinear problems is limited. Helicopter aeroelasticity involves the solution of systems of nonlinear equations in a computationally expensive environment. Reliable solution methods which do not need Jacobian calculation at each iteration are needed for this problem. In this paper, a comparative study is done by incorporating different methods for solving the nonlinear equations in helicopter trim. Three different methods based on calculating the Jacobian at the initial guess are investigated. (C) 2011 Elsevier Masson SAS. All rights reserved.