26 resultados para ACP
em Indian Institute of Science - Bangalore - Índia
Resumo:
Condensing enzymes play an important and decisive role in terms of fatty acid composition of any organism. They can be classified as condensing enzymes involved in initiating the cycle and enzymes involved in elongating the initiated fatty acyl chain. In E. coli, two isoforms for the elongation condensing enzymes (FabB and FabF) exists whereas Plasmodium genome contains only one isoform. By in vitro complementation studies in E. coli CY244 cells, we show that PfFabB/ functions like E. coli FabF as the growth of the mutant cells could rescued only in the presence of oleic acid. But unlike bacterial enzyme, PfFabB/F does not increase the cis-vaccenic acid content in the mutant cells upon lowering the growth temperature. This study thus highlights the distinct properties of P. falciparum FabF which sets it apart from E. coli and most other enzymes of this family, described so far.
Resumo:
A structure-based approach has been adopted to develop 2'substituted analogs of triclosan. The Cl at position 2' in ring B of triclosan was chemically substituted with other functional groups like NH2, NO2 and their inhibitory potencies against PfENR were determined. The binding energies of the 2' substituted analogs of triclosan for enoyl-acyl carrier protein reductase (ENR) of Plasmodium falciparum were determined using Autodock. Based on the autodock results, we synthesized the potential compounds. The IC50 and inhibition constant (K-i) of 2' substituted analogs of triclosan were determined against purified PfENR. Among them, two compounds,2-(2'-Amino-4'-chloro-phenoxy)-5-chloro-phenol (compound 4) and 5-chloro-2-(4'-chloro-2'-nitro-phenoxy)-phenol) (compound 5) exhibited good potencies. Compound 4 followed uncompetitive inhibition kinetics with crotonoyl CoA and competitive with NADH. It was shown to have an IC50 of 110 nM; inhibition constant was 104 nM with the substrate and 61 nM with the cofactor. IC50 Of compound 5 was determined to be 229 nM. Compounds 4 and 5 showed significant inhibition of the parasite growth in P. falciparum culture. (C) 2009 IUBMB IUBMB Life, 61(11):1083-1091, 2009.
Resumo:
Epigallocatechin gallate (EGCG) is known to have numerous pharmacological properties. In the present study, we have shown that EGCG inhibits enoyl–acyl carrier protein reductase of Plasmodium falciparum (PfENR) by following a two-step, slow, tight-binding inhibition mechanism. The association/isomerization rate constant (k5) of the reversible and loose PfENR–EGCG binary complex to a tight [PfENR–EGCG]* or EI* complex was calculated to be 4.0 × 10−2 s−1. The low dissociation rate constant (k6) of the [PfENR–EGCG]* complex confirms the tight-binding nature of EGCG. EGCG inhibited PfENR with the overall inhibition constant (Ki*) of 7.0 ± 0.8 nM. Further, we also studied the effect of triclosan on the inhibitory activity of EGCG. Triclosan lowered the k6 of the EI* complex by 100 times, lowering the overall Ki* of EGCG to 97.5 ± 12.5 pM. The results support EGCG as a promising candidate for the development of tea catechin based antimalarial drugs.
Resumo:
Benzothiophene derivatives like benzothiophene sulphonamides, biphenyls, or carboxyls have been synthesized and have found wide pharmacological usage. Here we report, bromo-benzothiophene carboxamide derivatives as potent, slow tight binding inhibitors of Plasmodium enoyl-acyl carrier protein (ACP) reductase (PfENR). 3-Bromo-N-(4-fluorobenzyl)-benzo[b]thiophene-2-carboxamide (compound 6) is the most potent inhibitor with an IC(50) of 115 nM for purified PfENR. The inhibition constant (K(i)) of compound 6 was 18 nM with respect to the cofactor and 91 nM with respect to crotonoyl-CoA. These inhibitors showed competitive kinetics with cofactor and uncompetitive kinetics with the substrate. Thus, these compounds hold promise for the development of potent antimalarials. (C) 2011 IUBMB IUBMB Life, 63(12): 1101-1110, 2011
Resumo:
Quest for new drug targets in Plasmodium sp. has underscored malonyl CoA:ACP transacylase (PfFabD) of fatty acid biosynthetic pathway in apicoplast. In this study, a piggyback approach was employed for the receptor deorphanization using inhibitors of bacterial FabD enzymes. Due to the lack of crystal structure, theoretical model was constructed using the structural details of homologous enzymes. Sequence and structure analysis has localized the presence of two conserved pentapeptide motifs: GQGXG and GXSXG and five key invariant residues viz., Gln109, Ser193, Arg218, His305 and Gln354 characteristic of FabD enzyme. Active site mapping of PfFabD using substrate molecules has disclosed the spatial arrangement of key residues in the cavity. As structurally similar molecules exhibit similar biological activities, signature pharmacophore fingerprints of FabD antagonists were generated using 0D-3D descriptors for molecular similarity-based cluster analysis and to correlate with their binding profiles. It was observed that antagonists showing good geometrical fitness score were grouped in cluster-1, whereas those exhibiting high binding affinities in cluster-2. This study proves important to shed light on the active site environment to reveal the hotspot for binding with higher affinity and to narrow down the virtual screening process by searching for close neighbors of the active compounds.
Resumo:
One of the unexplored, yet important aspects of the biology of acyl carrier proteins (ACPs) is the self-acylation and malonyl transferase activities dedicated to ACPs in polyketide synthesis. Our studies demonstrate the existence of malonyl transferase activity in ACPs involved in type II fatty acid biosynthesis from Plasmodium falciparum and Escherichia coli. We also show that the catalytic malonyl transferase activity is intrinsic to an individual ACP. Mutational analysis implicates an arginine/lysine in loop II and an arginine/glutamine in helix III as the catalytic residues for transferase function. The hydrogen bonding properties of these residues appears to be indispensable for the transferase reaction. Complementation of fabD(Ts) E. coli highlights the putative physiological role of this process. Our studies thus shed light on a key aspect of ACP biology and provide insights into the mechanism involved therein.
Resumo:
Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis. However, the molecular machinery that mediates its function is not yet fully understood. Therefore, structural studies were carried out on the acyl-ACP intermediates of Plasmodium falciparum using NMR as a spectroscopic probe. Chemical shift perturbation studies put forth a new picture of the interaction of ACP molecule with the acyl chain, namely, the hydrophobic core can protect up to 12 carbon units, and additional carbons protrude out from the top of the hydrophobic cavity. The latter hypothesis stems from chemical shift changes observed in C-alpha and C-beta of Ser-37 in tetradecanoyl-ACP. C-13, N-15-Double-filtered nuclear Overhauser effect (NOE) spectroscopy experiments further substantiate the concept; in octanoyl (C-8)- and dodecanoyl (C-12)-ACP, a long range NOE is observed within the phosphopantetheine arm, suggesting an arch-like conformation. This NOE is nearly invisible in tetradecanoyl (C-14)-ACP, indicating a change in conformation of the prosthetic group. Furthermore, the present study provides insights into the molecular mechanism of ACP expansion, as revealed from a unique side chain-to-backbone hydrogen bond between two fairly conserved residues, Ile-55 HN and Glu-48 O. The backbone amide of Ile-55 HN reports a pK(a) value for the carboxylate, similar to 1.9 pH units higher than model compound value, suggesting strong electrostatic repulsion between helix II and helix III. Charge-charge repulsion between the helices in combination with thrust from inside due to acyl chain would energetically favor the separation of the two helices. Helix III has fewer structural restraints and, hence, undergoes major conformational change without altering the overall-fold of P. falciparum ACP.
Resumo:
Acyl carrier protein (ACIP) plays a central role in many metabolic processes inside the cell, and almost 4% of the total enzymes inside the cell require it as a cofactor. Here, we report self-acylation properties in ACPs from Plasmodium falciparum and Brassica napus that are essential components of type II fatty acid biosynthesis (FAS II), disproving the existing notion that this phenomenon is restricted only to ACPs involved in polyketide biosynthesis. We also provide strong evidence to suggest that catalytic self-acylation is intrinsic to the individual ACP. Mutational analysis of these ACPs revealed the key residue(s) involved in this phenomenon. We also demonstrate that these FAS 11 ACPs exhibit a high degree of selectivity for self-acylation employing only dicarboxylic acids as substrates. A plausible mechanism for the self-acylation reaction is also proposed.
Resumo:
Two seven-residue helical segments, Val-Ala-Leu-Aib-Val-Ala-Leu, were linked synthetically with an epsilon-aminocaproic acid (Acp) linker with the intention of making a stable antiparallel helix-helix motif. The crystal structure of the linked peptide Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-Acp-Val-Ala-Leu-Aib-Val-Ala-Leu-OMe (1) shows the two helices displaced laterally from each other by the linker, but the linker has not folded the molecule into a close-packed antiparallel conformation. Two strong intermolecular NH...O = C hydrogen bonds are formed between the top of the lower helix of one molecule and the bottom of the upper helix in a laterally adjacent molecule to give the appearance of an extended single helix. The composite peptide with Boc and OMe end groups, C76H137N15O18.H2O, crystallize in space group P2(1) with a = 8.802 (1) angstrom, b = 20.409 (4) angstrom, c = 26.315 (3) angstrom, and beta = 90.72 (1)degrees; overall agreement R = 7.86% for 5030 observed reflections (\F(o)\ > 3-sigma(F)); resolution = 0.93 angstrom. Limited evidence for a more compact conformation in solution consistent with an antiparallel helix arrangement is obtained by comparison of the HPLC retention times and CD spectra of peptide 1 with well-characterized continuous helices of similar length and sequence.
Resumo:
We report the backbone chemical shift assignments of the acyl-acyl carrier protein (ACP) intermediates of the fatty acid biosynthesis pathway of Plasmodium falciparum. The acyl-ACP intermediates butyryl (C4), -octanoyl (C8), -decanoyl (C10), -dodecanoyl (C12) and -tetradecanoyl (C14)-ACPs display marked changes in backbone HN, Cα and Cβ chemical shifts as a result of acyl chain insertion into the hydrophobic core. Chemical shift changes cast light on the mechanism of expansion of the acyl carrier protein core.
Resumo:
Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis. However, the molecular machinery that mediates its function is not yet fully understood. Therefore, structural studies were carried out on the acyl-ACP intermediates of Plasmodium falciparum using NMR as a spectroscopic probe. Chemical shift perturbation studies put forth a new picture of the interaction of ACP molecule with the acyl chain, namely, the hydrophobic core can protect up to 12 carbon units, and additional carbons protrude out from the top of the hydrophobic cavity. The latter hypothesis stems from chemical shift changes observed in C-alpha and C-beta of Ser-37 in tetradecanoyl-ACP. C-13, N-15-Double-filtered nuclear Overhauser effect (NOE) spectroscopy experiments further substantiate the concept; in octanoyl (C-8)- and dodecanoyl (C-12)-ACP, a long range NOE is observed within the phosphopantetheine arm, suggesting an arch-like conformation. This NOE is nearly invisible in tetradecanoyl (C-14)-ACP, indicating a change in conformation of the prosthetic group. Furthermore, the present study provides insights into the molecular mechanism of ACP expansion, as revealed from a unique side chain-to-backbone hydrogen bond between two fairly conserved residues, Ile-55 HN and Glu-48 O. The backbone amide of Ile-55 HN reports a pK(a) value for the carboxylate, similar to 1.9 pH units higher than model compound value, suggesting strong electrostatic repulsion between helix II and helix III. Charge-charge repulsion between the helices in combination with thrust from inside due to acyl chain would energetically favor the separation of the two helices. Helix III has fewer structural restraints and, hence, undergoes major conformational change without altering the overall-fold of P. falciparum ACP.
Resumo:
The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (β-ketoacyl-ACP synthase), FabG (β-ketoacyl-ACP reductase), FabZ (β-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (–)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.
Resumo:
The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (β-ketoacyl-ACP synthase), FabG (β-ketoacyl-ACP reductase), FabZ (β-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (–)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.
Resumo:
Acyl Carrier Protein (ACP) from the malaria parasite, Plasmodium falciparum (PfACP) in its holo form is found to exist in two conformational states in solution. Unique 3D solution structures of holo-PfACP have been determined for both equilibrium conformations, using high-resolution NMR methods. Twenty high-resolution solution structures for each of the two forms of holo-PfACP have been determined on the basis of 1226 and 1218 unambiguously assigned NOEs (including NOEs between 4 '-phosphopantetheine prosthetic group (4 '-PP) and protein), 55 backbone dihedral angles and 26 hydrogen bonds. The atomic rmsd values of the determined structures of two equilibrium forms, about the mean coordinates of the backbone and heavy atoms, are 0.48 +/- 0.09 and 0.92 +/- 0.10 and 0.49 +/- 0.08 and 0.97 +/- 0.11 angstrom, respectively. The interaction of 4 '-PP with the polypeptide backbone is reported here for the first time for any of the ACPs. The structures of holo-PfACP consist of three well-defined helices that are tightly packed. The structured regions of the molecule are stabilized by extensive hydrophobic interactions. The difference between the two forms arises from a reorientation of the 4 '-PP group. The enthalpy difference between the two forms, although small, implies that a conformational switch is essential for the activation of holo-ACP. Sequence and structures of holo-PfACP have been compared with those of the ACPs from type I and type II fatty acid biosynthesis pathways (FAS), in particular with the ACP from rat and the butyryl-ACP from E. coli. The PfACP structure, thus determined has several novel features hitherto not seen in other ACPs.