17 resultados para 990
em Indian Institute of Science - Bangalore - Índia
Resumo:
The title compound, C16H18N2O2, is an important precursor in the synthesis of 1,2,3,4-tetrahydropyrazinoindoles, which show excellent antihistamine, antihypertensive and central nervous system depressant properties. The carbethoxy group attached to C2 and the planar cyanoethyl group attached to N1 make dihedral angles of 11.0(4) and 75.0(3)degrees, respectively, with the mean plane of the indole ring, The C-C=N chain is linear with a bond angle of 179.3 (4)degrees.
Resumo:
MeNCS undergoes insertion into the copper(I)-aryloxide bond to form [N-methylimino(aryloxy)methanethiolato]-copper(I) complexes. This insertion occurs in the absence of ancillary ligands unlike the analogous insertion of PhNCS. The reaction with 4-methylphenoxide results in the formation of hexakis[[N-methylimino(4-methylphenoxy) methanethiolato]copper(I)] (1), which has been characterized by X-ray crystallography. Crystal data for 1: hexagonal , a = 10.088(2) Angstrom, b = 11.302(1) Angstrom, c = 17.990(2) Angstrom, alpha = 94.06(1)degrees, beta = 95.22(2)degrees, gamma = 103.94(1)degrees, Z = 2, V = 1974.4(7) Angstrom(3), R = 0.0361. In the presence of of PPh(3), the insertion reaction becomes reversible. This allows the exchange of the heterocumulene MeNCS or the aryloxy group in these molecules with another heterocumulene or a phenol, respectively, when catalytic amounts of PPh(3) are added. Oligomers with exchanged heterocumulmes and phenols could be characterized by independent synthesis.
Resumo:
This paper is concerned with the integration of voice and data on an experimental local area network used by the School of Automation, of the Indian Institute of Science. SALAN (School of Automation Local Area Network) consists of a number of microprocessor-based communication nodes linked to a shared coaxial cable transmission medium. The communication nodes handle the various low-level functions associated with computer communication, and interface user data equipment to the network. SALAN at present provides a file transfer facility between an Intel Series III microcomputer development system and a Texas Instruments Model 990/4 microcomputer system. Further, a packet voice communication system has also been implemented on SALAN. The various aspects of the design and implementation of the above two utilities are discussed.
Resumo:
The incorporation of [2-14C]mevalonate into nonsaponifiable lipids by rat brain homogenates is inhibited by phenolic acids derived from tyrosine. The phenyl acids derived from phenylalanine are inhibitory only at very high concentrations compared with phenolic acids. The brain is more sensitive to inhibition by the phenolic acids than the liver. These studies indicate a possible role for phenolic acids in the impairment of cerebral sterol metabolism in phenylketonuria.
Resumo:
Mr=328.32, triclinic, P1, a=5.801 (1), b=7.977(1), c=9.110(2)A, ~t=102.33 (1), fl= 97.92 (1), y= 109.82 (1) °, v= 377.2 (1) A 3 at 293 K, Z=I, D x=1.45, D m=1.45 g cm -3, 2(MoKs)= 0.7107 A, ~ = 0.74 cm -1, F(000) = 174.0. R = 0.046 for 990 unique observed [F o > 4O(Fo)] reflections. The crystal structure is stabilized by extensive hydrogen bonding involving all N and O atoms.
Resumo:
It has been found experimentally that the results related to the collective field emission performance of carbon nanotube (CNT) arrays show variability. The emission performance depends on the electronic structure of CNTs (especially their tips). Due to limitations in the synthesis process, production of highly pure and defect free CNTs is very difficult. The presence of defects and impurities affects the electronic structure of CNTs. Therefore, it is essential to analyze the effect of defects on the electronic structure, and hence, the field emission current. In this paper, we develop a modeling approach for evaluating the effect of defects and impurities on the overall field emission performance of a CNT array. We employ a concept of effective stiffness degradation for segments of CNTs, which is due to structural defects. Then, we incorporate the vacancy defects and charge impurity effects in our Green's function based approach. Simulation results indicate decrease in average current due to the presence of such defects and impurities.
Resumo:
Background: The gene encoding for uncoupling protein-1 (UCP1) is considered to be a candidate gene for type 2 diabetes because of its role in thermogenesis and energy expenditure. The objective of the study was to examine whether genetic variations in the UCP1 gene are associated with type 2 diabetes and its related traits in Asian Indians. Methods: The study subjects, 810 type 2 diabetic subjects and 990 normal glucose tolerant (NGT) subjects, were chosen from the Chennai Urban Rural Epidemiological Study (CURES), an ongoing population-based study in southern India. The polymorphisms were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Linkage disequilibrium (LD) was estimated from the estimates of haplotypic frequencies. Results: The three polymorphisms, namely -3826A -> G, an A -> C transition in the 5'-untranslated region (UTR) and Met229Leu, were not associated with type 2 diabetes. However, the frequency of the A-C-Met (-3826A -> G-5'UTR A -> C-Met229Leu) haplotype was significantly higher among the type 2 diabetic subjects (2.67%) compared with the NGT subjects (1.45%, P < 0.01). The odds ratio for type 2 diabetes for the individuals carrying the haplotype A-C-Met was 1.82 (95% confidence interval, 1.29-2.78, P = 0.009). Conclusions: The haplotype, A-C-Met, in the UCP1 gene is significantly associated with the increased genetic risk for developing type 2 diabetes in Asian Indians.
Resumo:
We develop new scheduling algorithms for the IEEE 802.16d OFDMA/TDD based broadband wireless access system, in which radio resources of both time and frequency slots are dynamically shared by all users. Our objective is to provide a fair and efficient allocation to all the users to satisfy their quality of service.
Resumo:
Cu (0.1 mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300 degrees C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV-Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson-Hall (W-H) plots and Scherrer's formula is found to be in the range of similar to 40 nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV-Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at g similar to 2.049, and two narrow resonances one at g similar to 1.990 and other at g similar to 1.950. The broad resonance signal at g similar to 2.049 is a characteristic of Cu2+ ion whereas the signal at g similar to 1.990 and g similar to 1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration (N) and paramagnetic susceptibility (X) have been evaluated and discussed. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Picosecond time-resolved resonance Raman spectra of the A (intramolecular charge transfer, ICT) state of DMABN, DMABN-d(6) and DMABN-N-15 have been obtained. The isotopic shifts identify the nu (s)(ph-N) mode as a band at 1281 cm(-1). The similar to 96 cm(-1) downshift of this mode from its ground state frequency rules out the electronic coupling PICT model and unequivocally supports the electronic decoupling TICT model. However, our results suggest some pyramidal character of the A state amino conformation.
Resumo:
This article is concerned with a study of an unusual effect due to density of biomass pellets in modern stoves based on close-coupled gasification-combustion process. The two processes, namely, flaming with volatiles and glowing of the char show different effects. The mass flux of the fuel bears a constant ratio with the air flow rate of gasification during the flaming process and is independent of particle density; char glowing process shows a distinct effect of density. The bed temperatures also have similar features: during flaming, they are identical, but distinct in the char burn (gasification) regime. For the cases, wood char and pellet char, the densities are 350, 990 kg/m(3), and the burn rates are 2.5 and 3.5 g/min with the bed temperatures being 1380 and 1502 K, respectively. A number of experiments on practical stoves showed wood char combustion rates of 2.5 +/- 0.5 g/min and pellet char burn rates of 3.5 +/- 0.5 g/min. In pursuit of the resolution of the differences, experimental data on single particle combustion for forced convection and ambient temperatures effects have been obtained. Single particle char combustion rate with air show a near-d(2) law and surface and core temperatures are identical for both wood and pellet char. A model based on diffusion controlled heat release-radiation-convection balance is set up. Explanation of the observed results needs to include the ash build-up over the char. This model is then used to explain observed behavior in the packed bed; the different packing densities of the biomass chars leading to different heat release rates per unit bed volume are deduced as the cause of the differences in burn rate and bed temperatures.
Resumo:
Measurements on the solid electrolyte cell(Ar -b H2 ~ H2S/CaS + CaF2 ~- ( P t ) / / C a F 2 / / ( P t )-~- CaF2 ~ CaS/H2S ~- H2 ~- At) show that the emf of the cell is directly related through the Nernst equation to the difference in sulfur potentials established at the two Ar ~- H2 ~ H2S/electrode interfaces. The electrodes are designed to convert the sulfur potential gradient across the calcium fluoride electrolyte into an equivalent fluorine potential gradient with the aid of the reaction, CaF2(s) ~ 1~ S2(g)-e CaS(s) ~- F2(g). The response time of the probe varies from approximately 9 hr at 990~ to 2.5 hr at 1225~ The conversion of calcium sulfide and/or calcium fluoride into calcium oxide should not be a problem in anticipated commercial coal gasification systems. Suggestions are presented for improving the cell for such commercial applications.
Resumo:
The two protein tyrosine phosphatase (PTP) domains in bi-domain PTPs share high sequence and structural similarity. However, only one of the two PIP domains is catalytically active. Here we describe biochemical studies on the two tandem PTP domains of the bi-domain PTP, PTP99A. Phosphatase activity, monitored using small molecule as well as peptide substrates, revealed that the inactive (D2) domain activates the catalytic (D1) domain. Thermodynamic measurements suggest that the inactive D2 domain stabilizes the bi-domain (D1-D2) protein. The mechanism by which the D2 domain activates and stabilizes the bi-domain protein is governed by few interactions at the inter-domain interface. In particular, mutating Lys990 at the interface attenuates inter-domain communication. This residue is located at a structurally equivalent location to the so-called allosteric site of the canonical single domain PIP, PTP1B. These observations suggest functional optimization in bi-domain PTPs whereby the inactive PTP domain modulates the catalytic activity of the bi-domain enzyme. (C) 2012 Elsevier B.V. All rights reserved.