3 resultados para 84-568

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An all-digital on-chip clock skew measurement system via subsampling is presented. The clock nodes are sub-sampled with a near-frequency asynchronous sampling clock to result in beat signals which are themselves skewed in the same proportion but on a larger time scale. The beat signals are then suitably masked to extract only the skews of the rising edges of the clock signals. We propose a histogram of the arithmetic difference of the beat signals which decouples the relationship of clock jitter to the minimum measurable skew, and allows skews arbitrarily close to zero to be measured with a precision limited largely by measurement time, unlike the conventional XOR based histogram approach. We also analytically show that the proposed approach leads to an unbiased estimate of skew. The measured results from a 65 nm delay measurement front-end indicate that for an input skew range of +/- 1 fan-out-of-4 (FO4) delay, +/- 3 sigma resolution of 0.84 ps can be obtained with an integral error of 0.65 ps. We also experimentally demonstrate that a frequency modulation on a sampling clock maintains precision, indicating the robustness of the technique to jitter. We also show how FM modulation helps in restoring precision in case of rationally related clocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we have discovered CXI-benzo-84 as a potential anticancer agent from a library of benzimidazole derivatives using cell based screening strategy. CXI-benzo-84 inhibited cell cycle progression in metaphase stage of mitosis and accumulated spindle assembly checkpoint proteins Mad2 and BubR1 on kinetochores, which subsequently activated apoptotic cell death in cancer cells. CXI-benzo-84 depolymerized both interphase and mitotic microtubules, perturbed EB1 binding to microtubules and inhibited the assembly and GTPase activity of tubulin in vitro. CXI-benzo-84 bound to tubulin at a single binding site with a dissociation constant of 1.2 +/- 0.2 mu M. Competition experiments and molecular docking suggested that CXI-benzo-84 binds to tubulin at the colchicine-site. Further, computational analysis provided a significant insight on the binding site of CXI-benzo-84 on tubulin. In addition to its potential use in cancer chemotherapy, CXI-benzo-84 may also be useful to screen colchicine-site agents and to understand the colchicine binding site on tubulin. (C) 2013 Elsevier Inc. All rights reserved.