9 resultados para 771006 Remnant vegetation and protected conservation areas
em Indian Institute of Science - Bangalore - Índia
Resumo:
Energy systems should be consistent with environmental, economic and social sustainability in order to ensure regional sustainable development. This enhances both current and future potential to meet the human needs and aspirations. Sustainable development, a process of change, in which, the exploitation of resources, the direction of investments , the orientation of technological development and institutional change are in harmony. National energy programme should prioritize the development of renewable energy sources, which offer the potentially huge sources of primary energy. The path for sustainability in the next millennium is the low energy path through wise use of energy. Energy conservation and energy efficiency measures would certainly result in meeting the energy demand with as little as half the primary supply at current levels. This requires profound structural changes in socio-economic and institutional arrangements. Environmentally sound, technically and economically viable energy pathways will sustain human progress in the long term future giving a fair and equitable share of the underprivileged and poor of the developing countries. Renewable energy is considered by some as the only hope for the survival of planet yet by others it is viewed as a marginal resource with limited resource. All too often, however, the facts behind the role that renewable energy can, and will, play in the regional energy scene are disguised or ignored as rival camps distort the evidence to suit their own objectives. It was in the light of this confusion that the Energy Research Group at Centre for Ecological Sciences, Indian Institute of Science undertook investigation in Kolar and Uttara Kannada Districts in Karnataka State, India to identify the potential contribution of several types of renewable energy sources: Solar, Wind, Hydro, Bioenergy, etc.
Resumo:
This study updates the status and conservation of the Endangered Asian elephant Elephas maximus in Cat Tien National Park, Vietnam. Line transect indirect surveys, block surveys for elephant signs, village surveys of elephant-human conflict incidents, guard-post surveys for records of sightings, and surveys of elephant food plants were undertaken during the dry and wet seasons of 2001. A minimum of 11 elephants and a maximum of 15-17 elephants was estimated for c. 500 km2 of the Park and its vicinity. The elephants are largely confined to the southern boundary of the Park and make extensive use of the adjoining La Nga State Forest Enterprises. During the dry season the elephants depend on at least 26 species of wild and cultivated plants, chiefly the fruits of cashew. Most of the villages surveyed reported some elephant-human conflict. Two adult male elephants seem to cover a large area to raid crops, whereas the family groups restrict themselves to a few villages; overall, the conflict is not serious. Since 2001 there have been no reports of any deaths or births of elephants in the Park. We make recommendations for habitat protection and management, increasing the viability of the small population, reducing elephant-human conflicts, and improving the chances of survival of the declining elephants of this Park. The Government has now approved an Action Plan for Urgent Conservation Areas in Vietnam that calls for the establishment of three elephant conservation areas in the country, including Cat Tien National Park.
Resumo:
Elephant are considered major drivers of ecosystems, but their effects within small-scale landscape features and on other herbivores still remain unclear. Elephant impact on vegetation has been widely studied in areas where elephant have been present for many years. We therefore examined the combined effect of short-term elephant presence (< 4 years) and hillslope position on tree species assemblages, resource availability, browsing intensity and soil properties. Short-term elephant presence did not affect woody species assemblages, but did affect height distribution, with greater sapling densities in elephant access areas. Overall tree and stem densities were also not affected by elephant. By contrast, slope position affected woody species assemblages, but not height distributions and densities. Variation in species assemblages was statistically best explained by levels of total cations, Zinc, sand and clay. Although elephant and mesoherbivore browsing intensities were unaffected by slope position, we found lower mesoherbivore browsing intensity on crests with high elephant browsing intensity. Thus, elephant appear to indirectly facilitate the survival of saplings, via the displacement of mesoherbivores, providing a window of opportunity for saplings to grow into taller trees. In the short-term, effects of elephant can be minor and in the opposite direction of expectation. In addition, such behavioural displacement promotes recruitment of saplings into larger height classes. The interaction between slope position and elephant effect found here is in contrast with other studies, and illustrates the importance of examining ecosystem complexity as a function of variation in species presence and topography. The absence of a direct effect of elephant on vegetation, but the presence of an effect on mesoherbivore browsing, is relevant for conservation areas especially where both herbivore groups are actively managed.
Resumo:
The discovery of GH (Glycoside Hydrolase) 19 chitinases in Streptomyces sp. raises the possibility of the presence of these proteins in other bacterial species, since they were initially thought to be confined to higher plants. The present study mainly concentrates on the phylogenetic distribution and homology conservation in GH19 family chitinases. Extensive database searches are performed to identify the presence of GH19 family chitinases in the three major super kingdoms of life. Multiple sequence alignment of all the identified GH19 chitinase family members resulted in the identification of globally conserved residues. We further identified conserved sequence motifs across the major sub groups within the family. Estimation of evolutionary distance between the various bacterial and plant chitinases are carried out to better understand the pattern of evolution. Our study also supports the horizontal gene transfer theory, which states that GH19 chitinase genes are transferred from higher plants to bacteria. Further, the present study sheds light on the phylogenetic distribution and identifies unique sequence signatures that define GH19 chitinase family of proteins. The identified motifs could be used as markers to delineate uncharacterized GH19 family chitinases. The estimation of evolutionary distance between chitinase identified in plants and bacteria shows that the flowering plants are more related to chitinase in actinobacteria than that of identified in purple bacteria. We propose a model to elucidate the natural history of GH19 family chitinases.
India's biodiversity hotspot under anthropogenic pressure: A case study of Nilgiri Biosphere Reserve
Resumo:
This paper presents data on the impact of biotic pressure in terms of grazing by livestock and wood cutting by humans on the plant community in the Nilgiri Biosphere Reserve of India. Grass, and herbaceous plant biomass, number of cattle dung piles, number of woody stems available and damaged by human activities and weed biomass were assessed at different proximity along transects radiating from village-forest boundary to forest interior to measure the ecological impact of livestock grazing and fire wood collection. The grass biomass was positively correlated to overgrazing indicating the adverse effect on natural vegetation by cattle. Woodcutting was intense along the forest boundary and significantly declined as distance increased. Similarly, weed biomass and number of thorny species declined positively with proximity from village-forest boundary and the weed biomass was significantly higher in the pastoral sites compared to residential sites. The results suggest that human impact adversely affects natural vegetation and promotes weed proliferation in forest areas adjoining human settlements in the ecologically important Nilgiri Biosphere Reserve. Continued anthropogenic pressure could cause reduction in fodder availability to large herbivores like elephants, which in turn leads to an increase in human-elephant conflict. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
In this paper, we estimate the trends and variability in Advanced Very High Resolution Radiometer (AVHRR)-derived terrestrial net primary productivity (NPP) over India for the period 1982-2006. We find an increasing trend of 3.9% per decade (r = 0.78, R-2 = 0.61) during the analysis period. A multivariate linear regression of NPP with temperature, precipitation, atmospheric CO2 concentration, soil water and surface solar radiation (r = 0.80, R-2 = 0.65) indicates that the increasing trend is partly driven by increasing atmospheric CO2 concentration and the consequent CO2 fertilization of the ecosystems. However, human interventions may have also played a key role in the NPP increase: non-forest NPP growth is largely driven by increases in irrigated area and fertilizer use, while forest NPP is influenced by plantation and forest conservation programs. A similar multivariate regression of interannual NPP anomalies with temperature, precipitation, soil water, solar radiation and CO2 anomalies suggests that the interannual variability in NPP is primarily driven by precipitation and temperature variability. Mean seasonal NPP is largest during post-monsoon and lowest during the pre-monsoon period, thereby indicating the importance of soil moisture for vegetation productivity.
Resumo:
Spatial information at the landscape scale is extremely important for conservation planning, especially in the case of long-ranging vertebrates. The biodiversity-rich Anamalai hill ranges in the Western Ghats of southern India hold a viable population for the long-term conservation of the Asian elephant. Through rapid but extensive field surveys we mapped elephant habitat, corridors, vegetation and land-use patterns, estimated the elephant population density and structure, and assessed elephant-human conflict across this landscape. GIS and remote sensing analyses indicate that elephants are distributed among three blocks over a total area of about 4600 km(2). Approximately 92% remains contiguous because of four corridors; however, under 4000 km2 of this area may be effectively used by elephants. Nine landscape elements were identified, including five natural vegetation types, of which tropical moist deciduous forest is dominant. Population density assessed through the dung count method using line transects covering 275 km of walk across the effective elephant habitat of the landscape yielded a mean density of 1.1 (95% Cl = 0.99-1.2) elephant/km(2). Population structure from direct sighting of elephants showed that adult male elephants constitute just 2.9% and adult females 42.3% of the population with the rest being subadults (27.4%), juveniles (16%) and calves (11.4%). Sex ratios show an increasing skew toward females from juvenile (1:1.8) to sub-adult (1:2.4) and adult (1:14.7) indicating higher mortality of sub-adult and adult males that is most likely due to historical poaching for ivory. A rapid questionnaire survey and secondary data on elephant-human conflict from forest department records reveals that villages in and around the forest divisions on the eastern side of landscape experience higher levels of elephant-human conflict than those on the western side; this seems to relate to a greater degree of habitat fragmentation and percentage farmers cultivating annual crops in the east. We provide several recommendations that could help maintain population viability and reduce elephant-human conflict of the Anamalai elephant landscape. (C) 2013 Deutsche Gesellschaft far Saugetierkunde. Published by Elsevier GmbH. All rights reserved.
Resumo:
Periodic estimation, monitoring and reporting on area under forest and plantation types and afforestation rates are critical to forest and biodiversity conservation, sustainable forest management and for meeting international commitments. This article is aimed at assessing the adequacy of the current monitoring and reporting approach adopted in India in the context of new challenges of conservation and reporting to international conventions and agencies. The analysis shows that the current mode of monitoring and reporting of forest area is inadequate to meet the national and international requirements. India could be potentially over-reporting the area under forests by including many non-forest tree categories such as commercial plantations of coconut, cashew, coffee and rubber, and fruit orchards. India may also be under-reporting deforestation by reporting only gross forest area at the state and national levels. There is a need for monitoring and reporting of forest cover, deforestation and afforestation rates according to categories such as (i) natural/primary forest, (ii) secondary/degraded forests, (iii) forest plantations, (iv) commercial plantations, (v) fruit orchards and (vi) scattered trees.
Resumo:
Rapid and invasive urbanization has been associated with depletion of natural resources (vegetation and water resources), which in turn deteriorates the landscape structure and conditions in the local environment. Rapid increase in population due to the migration from rural areas is one of the critical issues of the urban growth. Urbanisation in India is drastically changing the land cover and often resulting in the sprawl. The sprawl regions often lack basic amenities such as treated water supply, sanitation, etc. This necessitates regular monitoring and understanding of the rate of urban development in order to ensure the sustenance of natural resources. Urban sprawl is the extent of urbanization which leads to the development of urban forms with the destruction of ecology and natural landforms. The rate of change of land use and extent of urban sprawl can be efficiently visualized and modelled with the help of geo-informatics. The knowledge of urban area, especially the growth magnitude, shape geometry, and spatial pattern is essential to understand the growth and characteristics of urbanization process. Urban pattern, shape and growth can be quantified using spatial metrics. This communication quantifies the urbanisation and associated growth pattern in Delhi. Spatial data of four decades were analysed to understand land over and land use dynamics. Further the region was divided into 4 zones and into circles of 1 km incrementing radius to understand and quantify the local spatial changes. Results of the landscape metrics indicate that the urban center was highly aggregated and the outskirts and the buffer regions were in the verge of aggregating urban patches. Shannon's Entropy index clearly depicted the outgrowth of sprawl areas in different zones of Delhi. (C) 2014 Elsevier Ltd. All rights reserved.